$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Evaluation of grout penetration in single rock fracture using electrical resistivity

Geomechanics & engineering, v.24 no.1, 2021년, pp.1 - 14  

Lee, Hangbok (Center for Deep Subsurface Research, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ,  Oh, Tae-Min (Department of Civil and Environmental Engineering, Pusan National University (PNU)) ,  Lee, Jong-Won (Department of Civil and Environmental Engineering, Pusan National University (PNU))

Abstract AI-Helper 아이콘AI-Helper

In this study, a new approach using electrical resistivity measurement was proposed to detect grout penetration and to evaluate the grouting performance for such as waterproof efficiency in single rock fracture. For this purpose, an electrical resistivity monitoring system was designed to collect mu...

Keyword

참고문헌 (32)

  1. Axelsson, M., Gustafson, G. and Fransson, A. (2009), "Stop mechanism for cementitious grouts at different water-to-cement ratios", Tunn. Undergr. Sp. Tech., 24(4), 390-397. https://doi.org/10.1016/j.tust.2008.11.001. 

  2. Broch, E. (2007), "Use of the underground in the city of Trondheim, Norway", Proceedings of the 11th ACCUS Conference: Expanding the Frontiers, Athens, Greece, September. 

  3. Chen, Y., Nishiyama, T., Terada, M. and Iwamoto, Y. (2000), "A fluorescent approach to the identification of grout injected into fissures and pore spaces", Eng. Geol., 56, 395-401. https://doi.org/10.1016/S0013-7952(99)00100-3. 

  4. Eriksson, M. (2002), "Grouting field experiment at the Aspo hard rock laboratory", Tunn. Undergr. Sp. Tech., 17(3), 287-293. https://doi.org/10.1016/S0886-7798(02)00024-X. 

  5. Funehag, J. and Fransson, A. (2006), "Sealing narrow fractures with a Newtonian fluid: Model prediction for grouting verified by filed study", Tunn. Undergr. Sp. Tech., 21(5), 492-498. https://doi.org/10.1016/j.tust.2005.08.010. 

  6. Gueddouda, M.L., Lamara, M., Abou-bekr, N. and Taibi, S. (2010), "Hydraulic behaviour of dune sand bentonite mixtures under confining stress", Geomech. Eng., 2(3), 213-227. https://doi.org/10.12989/gae.2010.2.3.213. 

  7. Gustafson, G. and Stille, H. (1996), "Prediction of groutability from grout properties and hydrogeological data", Tunn. Undergr. Sp. Tech., 11(3), 325-332. https://doi.org/10.1016/0886-7798(96)00027-2. 

  8. Henderson, A.E., Robertson, I.A., Whitfield, J.M., Garrard, G.F.G., Swannell, N.G. and Fisch, H. (2008), "A new method for real-time monitoring of grout spread through fractured rocks", MRS Proc., 1107. https://doi.org/10.1557/PROC-1107-577. 

  9. Hoien, A.H. and Nilsen, B. (2014), "Rock mass grouting in the Loren tunnel: Case study with the main focus on the groutability and feasibility of drill parameter interpretation", Rock Mech. Rock Eng., 47(3), 967-983. https://doi.org/10.1007/s00603-013-0386-7. 

  10. ISRM. (1978), "Suggested methods for the quantitative description of discontinuities in rock masses", Int. J. Rock Mech. Min. Sci. Geomech., 15(6), 319-368. https://doi.org/10.1016/0148-9062(78)91472-9. 

  11. Keller G.V. and Frischknecht F.C. (1996), Electrical Methods in Geophysical Prospecting, Pergamon Press Inc., Oxford, U.K. 

  12. Khave, G.J. (2014), "Delineating subterranean water conduits using hydraulic testing and machine performance parameters in TBM tunnel post-grouting", Int. J. Rock Mech. Min. Sci., 70, 308-317. https://doi.org/10.1016/j.ijrmms.2014.04.013. 

  13. Kim, H.M., Lee, J.W., Yazdani, M., Tohidi, E., Nejati, H.R. and Park, E.S. (2018), "Coupled viscous fluid flow and joint deformation analysis for grout injection in a rock joint", Rock Mech. Rock Eng., 51(2), 627-638. https://doi.org/10.1007/s00603-017-1339-3. 

  14. Kobayashi, S., Soyq, M., Takeuchi, J., Nobuto, A., Nakaya, A., Okuno, T., Shimada, S., Kaneto, T. and Majima, T. (2014), "Rock grouting and durability experiments of colloidal silica at Kurashiki underground LPG storage base", Proceedings of the ISRM Regional Symposium - EUROCK 2014, Vigo, Spain, May. 

  15. Lee, H., Oh, T.M., Park, E.S., Lee, J.W. and Kim, H.M. (2017), "Factors affecting waterproof efficiency of grouting in single rock fracture", Geomech. Eng., 12(5), 771-783. https://doi.org/10.12989/gae.2017.12.5.771. 

  16. Lisa, H., Christina, B., Asa, F., Gunnar, G. and Johan, F. (2012), "A hard rock tunnel case study: Characterization of the water-bearing fracture system for tunnel grouting", Tunn. Undergr. Sp. Tech., 30, 132-144. https://doi.org/10.1016/j.tust.2012.02.014. 

  17. Lunn, R.J., Corson, L.T., Howell, C., El Mountassir, G., Reid, C. and Harley, S.L. (2018), "Could magnetic properties be used to image a grouted rock volume?", J. Appl. Geophys., 155, 162-175. https://doi.org/10.1016/j.jappgeo.2018.06.015. 

  18. Madhavi, T.Ch. and Annamalai, S. (2016), "Electrical conductivity of concrete", ARPN. J. Eng. Appl. Sci., 11(9), 5979-5982. 

  19. Majer, E. L. (1989), "The application of high frequency seismic monitoring methods for the mapping of grout injections", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 26(3-4), 249-256. https://doi.org/10.1016/0148-9062(89)91974-8. 

  20. Mohajerani, S., Baghbanan, A., Bagherpour, R. and Hashemolhosseini, H. (2015), "Grout penetration in fractured rock mass using a new developed explicit algorithm", Int. J. Rock Mech. Min. Sci., 80, 412-417. https://doi.org/10.1016/j.ijrmms.2015.06.013. 

  21. Mohammed, M.H., Pusch, R. and Knutsson, S. (2015), "Study of cement-grout penetration into fractures under static and oscillatory conditions", Tunn. Undergr. Sp. Tech., 45, 10-19. https://doi.org/10.1016/j.tust.2014.08.003. 

  22. Northcroft, I.W. (2006), "Innovative materials and methods for ground support, consolidation and water sealing for the mining industry", J. S. Afr. I. Min. Metall., 106(12), 835-844. 

  23. Oh, T.M., Cho, G.C. and Lee, C.H. (2014), "Effect of soil mineralogy and pore water chemistry on the electrical resistivity of saturated soils", J. Geotech. Geoenviron. Eng., 140(11), 06014012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001175. 

  24. Panthi, K.K. and Nilsen, B. (2010), "Uncertainty for assessing leakage through water tunnels: A case from Nepal Himalaya", Rock Mech. Rock Eng., 43(5), 629-639. https://doi.org/10.1007/s00603-009-0075-8. 

  25. Rafi, J.Y. and Stille, H. (2014), "Control of rock jacking considering spread of grout and grouting pressure", Tunn. Undergr. Sp. Tech., 40, 1-15. https://doi.org/10.1016/j.tust.2013.09.005. 

  26. Saeidi, O., Stille, H. and Torabi, S.R. (2013), "Numerical and analytical analyses of the effects of different joint and grout properties on the rock mass groutability", Tunn. Undergr. Sp. Tech., 38, 11-25. https://doi.org/10.1016/j.tust.2013.05.005. 

  27. SsangYong Cement Inc. (2016), http://www.ssangyongcement.co.kr/jsp. 

  28. Stille, H., Gustafson, G. and Hassler, L. (2012), "Application of new theories and technology for grouting of Dams and foundations on rock", Geotech. Geol. Eng., 30(3), 603-624. https://doi.org/10.1007/s10706-012-9512-7. 

  29. Wang, J.B., Liu, W.R., Huang, Y.X. and Zhang, X.C. (2015), "Prediction model of surface subsidence for salt rock storage based on logistic function", Geomech. Eng., 9(1), 25-37. https://doi.org/10.12989/gae.2015.9.1.025. 

  30. Zhang, D., Fang, Q. and Lou, H. (2014), "Grouting techniques for the unfavorable geological conditions of Xiang'an subsea tunnel in China", J. Rock Mech. Geotech. Eng., 6(5), 438-446. https://doi.org/10.1016/j.jrmge.2014.07.005. 

  31. Zhang, F., Xie, X. and Huang, H. (2010), "Application of ground penetrating radar in grouting evaluation for shield tunnel construction", Tunn. Undergr. Sp. Tech., 25(2), 99-107. https://doi.org/10.1016/j.tust.2009.09.006. 

  32. Zhang, Q., Xu, Z., Wu, J. and He, P. (2017), "Grouting effects evaluation of water-rich faults and its engineering application in Qingdao Jiaozhou Bay Subsea Tunnel, China", Geomech. Eng., 12(1), 35-52. https://doi.org/10.12989/gae.2017.12.1.035. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로