$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

시설 고추재배지에서 꽃노랑총채벌레 집합페로몬과 식물 휘발성 유인제 효능의 한계성
Limitation in Attraction Efficacy of Aggregation Pheromone or Plant Volatile Lures to Attract the Western Flower Thrips, Frankliniella occidentalis Infesting the Hot Pepper, Capsicum annuum, in Greenhouses 원문보기

한국응용곤충학회지 = Korean journal of applied entomology, v.60 no.4, 2021년, pp.369 - 377  

김철영 (안동대학교 식물의학과) ,  권기면 ((주) 생물이용연구소) ,  김용균 (안동대학교 식물의학과)

초록
AI-Helper 아이콘AI-Helper

꽃노랑총채벌레(Frankliniella occidentalis) 방제 전략 가운데 하나로 대량유살 기술이 제기되었다. 이를 위해 본 연구는 이 해충에 적용되는 상용유인제의 효능을 시설 고추재배지를 중심으로 분석하였다. 총채벌레 모니터링에 사용되는 점착트랩의 경우 청색과 황색 색상에 따른 유인력 차이는 크지 않았다. 그러나 트랩의 위치는 큰 변수로서 기주에 가까이 위치할수록 포획 밀도가 높았다. 또한 상하 위치도 중요한 변수로서 기주 작물 수관 부위에서 가장 높은 포획 밀도를 보였다. 이를 기준으로 황색 점착 트랩을 설치한 경우 전체 총채벌레 밀도의 약 1%를 유살하였다. 이러한 낮은 유살 능력을 높이기 위해 상용유인제를 황색트랩에 추가하였다. 집합페로몬 또는 식물 휘발성 유인제(4-methoxybenzaldehyde) 성분의 두 가지 상용유인제 추가 처리는 황색트랩 단독 처리에 비해 크게 유인력을 증가시키지 못하였다. 그러나 Y-튜브 실내 행동분석은 집합페로몬과 식물 휘발성 유인제(methyl isonicotinate)들이 각각 꽃노랑총채벌레에 대해서 높은 유인력을 가지고 있는 것을 확인하였다. 반면에 이들 유인물질 은 기주 고추 꽃보다 꽃노랑총채벌레에 대해서 상대적으로 낮은 유인력을 나타냈다. 이는 꽃이 없는 시설 대파(Allium fistulosum) 재배지에서는 상용유인제 추가 처리가 황색트랩 단독 처리보다 꽃노랑총채벌레에 대하여 높은 유인력을 가지는 것을 미뤄 이 곤충의 꽃에 대한 높은 선호성을 뒷받침하였다. 본 연구는 꽃노랑총채벌레에 사용되는 상용유인제들의 한계성을 지적하며 추후 고추 꽃을 중심으로 새로운 유인물질의 탐색에 대한 기초자료를 제공한다.

Abstract AI-Helper 아이콘AI-Helper

Mass trapping of the western flower thrips, Frankliniella occidentalis, has been considered as an option to control this pest. This study applied the commercial lures to the hot pepper-cultivating greenhouses and assessed the enhancement of the attracting efficiency by adding to sticky traps. There ...

주제어

표/그림 (7)

참고문헌 (32)

  1. Broughton, S., Harrison, J., 2012. Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficial insects (Syrphidae, Hemerobiidae) in deciduous fruit trees in Western Australia. Crop Prot. 42, 156-163. 

  2. Demirozer, O., Tyler-Julian, K., Funderburk, J., Leppla, N., Reitz, S., 2012. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Manag. Sci. 68, 1537-1545. 

  3. Dingle, H., Drake, V.A., 2007. What is migration? Bioscience. 57, 113-121. 

  4. Espinosa, P.J., Contreras, J., Quinto, V., Gravalos, C., Fernandez, E., Bielza, P., 2005. Metabolic mechanisms of insecticide resistance in the western flower thrips, Frankliniella occidentalis (Pergande). Pest Manag. Sci. 61, 1009-1015. 

  5. Fatnassi, H., Pizzol, J., Senoussi, R., Biondi, A., Desneux, N., Poncet, C., Boulard, T., 2015. Within-crop air temperature and humidity outcomes on spatio-temporal distribution of the key rose pest Frankliniella occidentalis. PLoS One 10, e0126655. 

  6. Hamilton, J.G., Hall. D.R., Kirk. W.D., 2005. Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. J. Chem. Ecol. 31, 1369-1379. 

  7. Isard, S.A., Gage, S.H., 2001. Flow of life in the atmosphere: an airscape approach to understanding invasive organisms. Michigan State University Press, East Lansing, MI. 

  8. Johansen, N.S, Torp, T., Solhaug, K.A., 2018. Phototactic response of Frankliniella occidentalis to sticky traps with blue light emitting diodes in herb and Alstroemeria greenhoses. Crop Prot. 114, 120-128. 

  9. Kim, C., 2000. Review of disease incidence of major crops in 2000. Korean J. Pestic. Sci. 5, 1-11. 

  10. Kim, T.Y., Jang, C., Kang, H.W., Choi, J.H., Lee, H.W., Lee, J.W., Lee, D.H., Yang, S.K., Lee, S.Y., Min, C.G., Lee, D.W., 2021a. Comparison of pest occurrence and viral disease incidence rate with reduced the application of pesticides in red pepper field. Korean J. Pestic. Sci. 25, 1-10. 

  11. Kim, C.Y., Choi, D.Y., Kang, J.H., Ahmed, S., Kil, E.J., Kwon, G.M., Lee, G.S., Kim, Y., 2021b. Thrips infesting hot pepper cultured in greenhouses and variation in gene sequences encoded in TSWV. Korean J. Appl. Entomol. 60, 387-401. 

  12. Kim, S., Kim, S.B., Kim, D.S., 2019. A preliminary study on the attractiveness of yellow sticky trap for insect pests according to the installation angle of traps in strawberry farms. Korean J. Appl. Entomol. 58, 143-149. 

  13. Kirk, W.D., Terry, L.I., 2003. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric. For. Entomol. 5, 301-310. 

  14. Kirk, W.S.J., de Kogel, W.J., Koschier, E.H., Teulon, D.A.J., 2021. Semiochemicals for thrips and their use in pest management. Annu. Rev. Entomol. 66, 101-119. 

  15. KOSIS (Korean Statistical Information Service), 2020. Area of cultivation of outdoor vegetables. https://kosis.kr/statHtml/statHtml.do?orgId101&tblIdDT_1ET0013&vw_cdMT_ZTITLE&list_idK1_15&seqNo&lang_modeko&languagekor&obj_var_id&itm_id&conn_pathMT_ZTITLE. (Accessed Sep. 28. 2021). 

  16. Lee, S., Lee, J., Kim, S., Choi, H., Park, J., Lee, J., Lee, K., Moon, J., 2004. The incidence and distribution of viral diseases in pepper by cultivation types. Res. Plant Dis. 10, 231-240. 

  17. Moon, H.C., Cho, I.K., Im, J.R., Goh, B.R., Kim, D.H., Hwang, C.Y., 2006. Seasonal occurrence and damage by thrips on open red pepper in Jeonbuk Province. Korean J. Appl. Entomol. 45, 9-13. 

  18. Niassy, S., Tamiru, A., Hamilton, J.G.C., Kirk, W.D.J., Mumm, R., Sims, C., de Kogel, W.J., Ekesi, S., Maniania, N.K., Bandi, K., Mitchell, F., Subramanian, S., 2019. Characterization of male-produced aggregation pheromone of the bean flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). J. Chem. Ecol. 45, 348-355. 

  19. Oke, T.R., 1987. Boundary layer climates. Methuen, London, UK. 

  20. Pappu, H.R., Jones, R.A.C, Jain, R.K., 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res. 141, 219-236. 

  21. RDA (Rural Development Administration), 2020. Pepper - agricultural technology guide 115 (revised edition), RDA, Jeonju, Korea. 

  22. Reitz, S.R., Gao, Y., Kirk, W.D.J., Hoddle, M.S., Leiss, K.A., Funderburk, J.E., 2020. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 65, 17-37. 

  23. Roth, F., Galli, Z., Toth, M., Fail, J., Jenser, G., 2016. The hypothesized visual system of Thrips tabaci (Lindeman) and Frankliniella occidentalis (Pergande) based on different coloured traps' catches. North-Western J. Zool. 12, 40-49. 

  24. Sampson, C., Kirk, W.D., 2013. Can mass trapping reduce thrips damage and is it economically viable? Management of the Western flower thrips in strawberry. PLoS One 8, e80787. 

  25. SAS Institute, 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC. 

  26. Seo, M.H., Lee, S.C., Yang, C.Y., Yoon, J.B., Park, J., 2018. Monitoring occurrence status of thrips populations on field-cultivated pepper at major cultivated region in west coast, Korea. Korean J. Environ. Biol. 36, 544-549. 

  27. Smith, E.A., Fuchs, M., Shields, E.J., Nault, B.A., 2015. Long-distance dispersal potential for onion thrips (Thysanoptera: Thripidae) and Iris yellow spot virus (Bunyavidiridae: Tospovirus) in an onion ecosystem. Environ. Entomol. 44, 921-930. 

  28. Takabayashi, J., Dicke, M., 1992. Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol. Exp. Appl. 64, 187-193. 

  29. Teulon, D.A.J., Davidson, M.M., Perry, N.B., Nielsen, M.C., Castane, C., Bosch, D., Riudavets, J., van Tol, R.W.H.M., de Kogel, W.J., 2017. Methyl isonicotinate - a non-pheromone thrips semiochemical - and its potential for pest management. Int. J. Trop. Insect Sci. 37, 50-56. 

  30. Webster, C.G., Reitz, S.R., Perry, K.L., Adkins, S.A., 2011. Natural M RNA reassortant arising from two species of plant-and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology 413, 216-225. 

  31. Zhang, B., Qian, W., Qiao, X., Xi, Y., Wan, F., 2019. Invasion biology, ecology, and management of Frankliniella occidentalis in China. Arch. Insect Biochem. Physiol. 102, e21613. 

  32. Zhao, M., Ho, H., Wu, Y., He, Y., Li, M., 2014. Western flower thrips (Frankliniella occidentalis) transmits Maize chlorotic mottle virus. J. Phytopathol. 162, 532-536. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로