최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of sensor science and technology = 센서학회지, v.30 no.6, 2021년, pp.388 - 394
조정훈 (부경대학교 기계설계공학부) , 문현우 (부경대학교 기계설계공학부) , 김성용 (부경대학교 기계설계공학부) , 최백규 (부경대학교 기계설계공학부) , 오광원 (부경대학교 기계설계공학부) , 정관영 (한국생산기술연구원) , 강인필 (부경대학교 기계설계공학부)
The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3...
https://www.chosun.com/economy/tech_it/2021/10/14/QSUV6NPMOFASLOOR4ILWZ46FA4/(retrieved on Oct. 18, 2021)
H. Liu, H. Zhang, W. Han, H. Lin, R. Li, J. Zhu, and W. Huang, "3D Printing Flexible Strain Sensors: From Printing to Devices and Signals", Adv. Mater., Vol. 33. 8, pp. 2004782(1)-2004782(19), 2021.
T. Blachowicz and A. Ehrmann, "3D Printed MEMS Technology-Recent Developments and Applications", Micromachines, Vol. 11, No. 4, pp. 434(1)-434(14), 2020.
A. Mora, P. Verma, and S. Kumar, "Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling", Compos. B. Eng., Vol. 183. pp. 107600(1)-107600(28), 2020.
S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, "A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors", PLoS One, Vol. 7, No. 11, pp. e49365(1)-e49365(6), 2012.
H. Guo, R. Lv, and S. Bai, "Recent advances on 3D printing graphene-based composites", Nano Mater. Sci., Vol. 1, No. 2, pp. 101-115, 2019.
S. H. Ko and J. H, Kwon, "Printing for Micro/nano-fabrication", J. KSME, Vol. 59, No. 3, pp.22-43, 2019.
G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, "Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling", Compos. A, Vol. 76, pp. 110-114, 2015.
K. Gnanasekaran, T. Heijimans, S. V. Bennekom, H. Woldhuis, S. Winjnia, G.D. With, and H. Friedrich, "3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling", Appl. Mater. Today, Vol. 9, pp. 21-28, 2017.
I. P. Kang, M. J. Schulz, J. H. Kim, S. Shanov, and D. Shi, "A Carbon Nanotube Strain Sensor for Structural Health Monitoring", Smart Mater. Struct., Vol. 15, No. 3, pp. 737-748, 2006.
I. P. Kang, "A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement", J. Korean Soc. Power System Engineering, Vol. 13, No. 1, pp. 65-71, 2009.
K. Y. Joung, S. Y. Kim, I. P. Kang, and S. H. Cho, " 3D-Printed Load Cell Using Nanocarbon Composite Strain Sensor", Sens., Vol. 21, No. 11, 2021.
J. F. Christ, N. Aliheidari, P. Potschke, and A. Ameli, "Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites", Polym., Vol. 11, No. 1, pp. 11(1)-11(16), 2019.
W. Huang, K. Dai, Y. Zhai, H. Liu, P. Zhan, J. Gao, G. Zheng, C. Liu, and C. Shen, "Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability", ACS App. Mater. Interfaces, Vol. 9, No. 48, pp. 42266-42277, 2017.
X. Wan, F. Zhang, Y. Liu, and J. Leng, "CNT-based electro-responsive shape memory functionalized 3D printed nanocomposites for liquid sensors", Carbon, Vol. 155, pp. 77-87, 2019.
T. D. Ngo, A. Kashan, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Compos. B Eng., Vol. 143, pp. 172-196, 2018.
T. Xiao, C. Qian, and R. Yin, "3D Printing of Flexible Strain Sensor Array Based on UV-Curable Multiwalled Carbon Nanotube/Elastomer Composite", Adv. Mater. Technol., Vol. 6, No. 1, pp. 2000745(1)-200745(10), 2020.
A. Cortes, X. F. Sanchez-Romate, and A. Jimenez-Suarez "Mechanical and Strain-Sensing Capabilities of Carbon Nanotube Reinforced Composites by Digital Light Processing 3D Printing Technology", Polym., Vol. 12, No. 4, pp. 975(1)-975(15), 2020.
G. Gonzalez, E. Fantino, and V. Bertana, "Development of 3D printable formulations containing CNT with enhanced electrical properties", Polym., Vol. 109, pp. 246-253, 2017.
https://3dplife.tistory.com/100 (retrieved on Oct. 10, 2021)
M. G. A. Mohamed, H. Kumer, and Z. Wang, "Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device using High-Resolution LCD Stereolithographic 3D Printing", Manuf. Mater. Process., Vol. 3, No. 1, pp. 26(1)-26(11), 2019.
J. F. Christ, N. Aliheidari, A. Ameli, and P. Potschke, "3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nano composites", Mater. Des., Vol. 131, pp. 392-401, 2017.
K. Y. Kim, J. H. Park, J. H. Suh, M .S. Kim, Y. R. Jeong, and I.K. Park, "3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments", Sens. Actuators A Phys., Vol. 263, pp. 493-500, 2017.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.