최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of environmental science international = 한국환경과학회지, v.30 no.12, 2021년, pp.1081 - 1092
In this study, the effect on the stability of Aerobic Granular Sludge (AGS) caused by an AGS separator was investigated. The AGS separator was a hydrocyclone. The main factors of the AGS separator were filter pore size (0.125~0.600 mm), conical-to-cylindrical ratio (1.5~3.0), and operating time (1~2...
Adav, S. S., Lee, D. J., Show, K. Y., Tay, J. H., 2008, Aerobic granular sludge: recent advances, Biotechnol. Adv., 26, 411-423.
American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
Campo, R., Lubello, C., Lotti, T., Di Bella, G., 2021, Aerobic granular-sludge membrane bioReactor (AGS-MBR) as a novel configuration for wastewater treatment and fouling mitigation: A mini-review, Memb., 11(4), 261.
de Kreuk, M. K., 2006, Aerobic granular sludge: scaling up a new technology, Ph. D. Dissertation, Delft University of Technology.
de Kreuk, M. K., Heijnen, J. J., van Loosdrecht, M. C. M., 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761-769.
de Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., Dos Santos, A. B., 2018, Aerobic granular sludge: cultivation parameters and removal mechanisms, Bioresour. Technol,, 270, 678-688.
Fontein, F., Van Kooy, J. and Leniger, H., 1962, The influence of some variables upon hydrocyclone performance, Brit. Chem. Engng., 7, 410-420.
Haaksman, V. A., Mirghorayshi, M., Van Loosdrecht, M. C. M., Pronk, M., 2020, Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge, Water Res., 187, 116402.
Hwang, K. J., Chou, S. P., 2017, Designing vortex finder structure for improving the particle separation efficiency of a hydrocyclone, Sep. Purif. Technol., 172: 76-84.
Kim, H. G., Ahn, D. H., 2019a, Effects of different hydraulic retention times on contaminant removal efficiency using aerobic granular sludge, Kor. Soc. Environ. Eng., 28, 669-676.
Kim, H. G., Ahn, D. H., 2019b, Study on the biological denitrification reaction of high-salinity wastewater using an aerobic granular sludge (AGS), Kor. Soc. Environ. Eng., 28, 607-615.
Kim, H. G., Ahn, D. H., 2019c, Effects on microbial activity of aerobic granular sludge (AGS) in high-salinity wastewater, Kor. Soc. Environ. Eng., 28, 629-637.
Kim, S. M., Jang, A., Chae, G. J., Yoo, H. W., Kim, I. S., 2008, Aerobic granulation in SBR for enhanced biological nutrient removal and application of phosphate solid-state Ion-selective microelectrode to characterize phosphorus removal, Kor. Soc. Environ. Eng. academic presentation papers, 2015-218.
Khan, M. Z., Mondal, P. K., Sabr, S., 2013, Aerobic granulation for wastewater bioremediation: A review, Can. J. Chem. Eng., 91, 1045-1058.
Lee, Y. G., Chon, H. N., Gin, H. Y., Lee, J. H., Moon, J. S., Lee, J. S., Ye, H. Y., Ahn, D. H., Ryu, J. H., 2016, Aerobic granular sludge separator device, Korea Patent, 10-1613711.
Li, X., Luo, J., Guo, G., Mackey, H. R., Hao, T., Chen, G., 2017, Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept, Water Res., 115, 210-219.
Nan, J., Yao, M., Li, Q., Zhan, D., Chen, T., Wang, Z., Li, H,. 2016, The role of shear conditions on floc characteristics and membrane fouling in coagulation/ultrafiltration hybrid process-the effect of flocculation duration and slow shear force. RSC advances, 6, 163-173.
Nancharaiah, Y. V., Sarvajith, M., 2019. Aerobic granular sludge process: a fast growing biological treatment for sustainable wastewater treatment, Current Opinion in Environ. Sci. Health, 12, 57-65.
Ni, L., Tian, J., Zhao, J., 2016. Experimental study of the effect of underflow pipe diameter on separation performance of a novel defoulant hydrocyclone with continuous underflow and reflux function, Sep. Purif. Technol., 171, 270-279.
Ni, L., Tian, J., Song, T., Jong, Y., Zhao, J., 2019, Optimizing geometric parameters in hydrocyclones for enhanced separations: a review and perspective, Sep. Purif. Technol. Reviews, 48, 30-51.
Pan, S., Tay, J. H., He, Y. X., Tay, S. T. L., 2004, The effect of hydraulic retention time on the stability of aerobically grown microbial granules, Lett. Appl. Microbiol., 38, 158-163.
Pronk, M., De Kreuk, M. K., De Bruin, B., Kamminga, P., Kleerebezem, R. V., Van Loosdrecht, M. C. M., 2015, Full scale performance of the aerobic granular sludge process for sewage treatment, Water Res., 84, 207-217.
Purba, L. D. A., Ibiyeye, H. T., Yuzir, A., Mohamad, S. E., Iwamoto, K., Zamyadi, A., Abdullah, N., 2020, Various applications of aerobic granular sludge: A review, Environ. Technol. Innovation, 101045.
Schwarzenbeck, N., Erley, R., Wilderer, P. A., 2004. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter, Water Sci. Technol., 49, 41-46.
Sguanci, S., Lubello, C., Caffaz, S., Lotti, T., 2019, Long-term stability of aerobic granular sludge for the treatment of very low-strength real domestic wastewater, J. Clean. Prod., 222, 882-890.
Sheik, A. R., Muller, E. E. L., Wilmes, P., 2014, A Hundred years of activated sludge: time to rethink, Front. Microbiol., 5, 47.
Silva, D. O., Vieira, L. G. M. Barrozo, M. A. S., 2015, Optimization of design and performance of solid-liquid separators: a thickener hydrocyclone, Chem. Eng. Technol., 38, 319-326.
Svarovsky, L., 1984, Hydrocyclones; Technomic Publishing Co: London., 79-89.
Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8, 172.
Vashi, H., Iorhemen, O. T., Tay, J. H., 2019, Extensive studies on the treatment of pulp mill wastewater using aerobic granular sludge (AGS) technology. Chem. Eng. J., 359, 1175-1194.
Wang, S., Ma, X., Wang, Y., Du, G., Tay, J., Li, J., 2019. Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport, Bioresour. Technol., 273, 350-357.
Welling, C., Kennedy, A., Wett, B., Johnson, C., Rutherford, B., Baumler, R., Bott, C., 2015. Improving settleability and enhancing biological phosphorus removal through the implementation of hydrocyclones, Proceedings of the Water Environment Federation, 6171-6179.
Xu, J., Sun, Y., Liu, Y., Yuan, W., Dai, L., Xu, W., Wang, H., 2019, In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone, Sci. Total Environ., 695, 133825.
Yamamoto, T., Oshikawa, T., Yoshida, H., Fukui, K., 2016, Improvement of particle separation performance by new type hydrocyclone, Sep. Purif. Technol., 158, 223-229.
Yang, C., Zhang, W., Liu, R., Li, Q., Li, B., Wang, S., Song, C., Qiao, C., Mulchandani, A., 2011, Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants, Environ, sci, technol., 45, 7408-7415.
Zhang, W., Jiang, F., 2019, Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size, Water Res., 157, 445-453.
Zhou, J. H., Zhang, Z. M., Zhao, H., Yu, H. T., Alvarez, P. J., Xu, X. Y., Zhu, L., 2016, Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress, Bioresour. Technol., 216, 562-570.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.