$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 호기성 그래뉼 슬러지 선별 분리기가 호기성 그래뉼 슬러지의 안정성에 미치는 영향
Effects of Aerobic Granular Sludge Separator on the Stability of Aerobic Granular Sludge (AGS) 원문보기

Journal of environmental science international = 한국환경과학회지, v.30 no.12, 2021년, pp.1081 - 1092  

권규태 (주식회사 블루뱅크) ,  김현구 (주식회사 블루뱅크) ,  안대희 (주식회사 블루뱅크)

Abstract AI-Helper 아이콘AI-Helper

In this study, the effect on the stability of Aerobic Granular Sludge (AGS) caused by an AGS separator was investigated. The AGS separator was a hydrocyclone. The main factors of the AGS separator were filter pore size (0.125~0.600 mm), conical-to-cylindrical ratio (1.5~3.0), and operating time (1~2...

Keyword

참고문헌 (37)

  1. Adav, S. S., Lee, D. J., Show, K. Y., Tay, J. H., 2008, Aerobic granular sludge: recent advances, Biotechnol. Adv., 26, 411-423. 

  2. American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA. 

  3. Campo, R., Lubello, C., Lotti, T., Di Bella, G., 2021, Aerobic granular-sludge membrane bioReactor (AGS-MBR) as a novel configuration for wastewater treatment and fouling mitigation: A mini-review, Memb., 11(4), 261. 

  4. de Kreuk, M. K., 2006, Aerobic granular sludge: scaling up a new technology, Ph. D. Dissertation, Delft University of Technology. 

  5. de Kreuk, M. K., Heijnen, J. J., van Loosdrecht, M. C. M., 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761-769. 

  6. de Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., Dos Santos, A. B., 2018, Aerobic granular sludge: cultivation parameters and removal mechanisms, Bioresour. Technol,, 270, 678-688. 

  7. Fontein, F., Van Kooy, J. and Leniger, H., 1962, The influence of some variables upon hydrocyclone performance, Brit. Chem. Engng., 7, 410-420. 

  8. Haaksman, V. A., Mirghorayshi, M., Van Loosdrecht, M. C. M., Pronk, M., 2020, Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge, Water Res., 187, 116402. 

  9. Hwang, K. J., Chou, S. P., 2017, Designing vortex finder structure for improving the particle separation efficiency of a hydrocyclone, Sep. Purif. Technol., 172: 76-84. 

  10. Kim, H. G., Ahn, D. H., 2019a, Effects of different hydraulic retention times on contaminant removal efficiency using aerobic granular sludge, Kor. Soc. Environ. Eng., 28, 669-676. 

  11. Kim, H. G., Ahn, D. H., 2019b, Study on the biological denitrification reaction of high-salinity wastewater using an aerobic granular sludge (AGS), Kor. Soc. Environ. Eng., 28, 607-615. 

  12. Kim, H. G., Ahn, D. H., 2019c, Effects on microbial activity of aerobic granular sludge (AGS) in high-salinity wastewater, Kor. Soc. Environ. Eng., 28, 629-637. 

  13. Kim, S. M., Jang, A., Chae, G. J., Yoo, H. W., Kim, I. S., 2008, Aerobic granulation in SBR for enhanced biological nutrient removal and application of phosphate solid-state Ion-selective microelectrode to characterize phosphorus removal, Kor. Soc. Environ. Eng. academic presentation papers, 2015-218. 

  14. Khan, M. Z., Mondal, P. K., Sabr, S., 2013, Aerobic granulation for wastewater bioremediation: A review, Can. J. Chem. Eng., 91, 1045-1058. 

  15. Lee, Y. G., Chon, H. N., Gin, H. Y., Lee, J. H., Moon, J. S., Lee, J. S., Ye, H. Y., Ahn, D. H., Ryu, J. H., 2016, Aerobic granular sludge separator device, Korea Patent, 10-1613711. 

  16. Li, X., Luo, J., Guo, G., Mackey, H. R., Hao, T., Chen, G., 2017, Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept, Water Res., 115, 210-219. 

  17. Nan, J., Yao, M., Li, Q., Zhan, D., Chen, T., Wang, Z., Li, H,. 2016, The role of shear conditions on floc characteristics and membrane fouling in coagulation/ultrafiltration hybrid process-the effect of flocculation duration and slow shear force. RSC advances, 6, 163-173. 

  18. Nancharaiah, Y. V., Sarvajith, M., 2019. Aerobic granular sludge process: a fast growing biological treatment for sustainable wastewater treatment, Current Opinion in Environ. Sci. Health, 12, 57-65. 

  19. Ni, L., Tian, J., Zhao, J., 2016. Experimental study of the effect of underflow pipe diameter on separation performance of a novel defoulant hydrocyclone with continuous underflow and reflux function, Sep. Purif. Technol., 171, 270-279. 

  20. Ni, L., Tian, J., Song, T., Jong, Y., Zhao, J., 2019, Optimizing geometric parameters in hydrocyclones for enhanced separations: a review and perspective, Sep. Purif. Technol. Reviews, 48, 30-51. 

  21. Pan, S., Tay, J. H., He, Y. X., Tay, S. T. L., 2004, The effect of hydraulic retention time on the stability of aerobically grown microbial granules, Lett. Appl. Microbiol., 38, 158-163. 

  22. Pronk, M., De Kreuk, M. K., De Bruin, B., Kamminga, P., Kleerebezem, R. V., Van Loosdrecht, M. C. M., 2015, Full scale performance of the aerobic granular sludge process for sewage treatment, Water Res., 84, 207-217. 

  23. Purba, L. D. A., Ibiyeye, H. T., Yuzir, A., Mohamad, S. E., Iwamoto, K., Zamyadi, A., Abdullah, N., 2020, Various applications of aerobic granular sludge: A review, Environ. Technol. Innovation, 101045. 

  24. Schwarzenbeck, N., Erley, R., Wilderer, P. A., 2004. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter, Water Sci. Technol., 49, 41-46. 

  25. Sguanci, S., Lubello, C., Caffaz, S., Lotti, T., 2019, Long-term stability of aerobic granular sludge for the treatment of very low-strength real domestic wastewater, J. Clean. Prod., 222, 882-890. 

  26. Sheik, A. R., Muller, E. E. L., Wilmes, P., 2014, A Hundred years of activated sludge: time to rethink, Front. Microbiol., 5, 47. 

  27. Silva, D. O., Vieira, L. G. M. Barrozo, M. A. S., 2015, Optimization of design and performance of solid-liquid separators: a thickener hydrocyclone, Chem. Eng. Technol., 38, 319-326. 

  28. Svarovsky, L., 1984, Hydrocyclones; Technomic Publishing Co: London., 79-89. 

  29. Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8, 172. 

  30. Vashi, H., Iorhemen, O. T., Tay, J. H., 2019, Extensive studies on the treatment of pulp mill wastewater using aerobic granular sludge (AGS) technology. Chem. Eng. J., 359, 1175-1194. 

  31. Wang, S., Ma, X., Wang, Y., Du, G., Tay, J., Li, J., 2019. Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport, Bioresour. Technol., 273, 350-357. 

  32. Welling, C., Kennedy, A., Wett, B., Johnson, C., Rutherford, B., Baumler, R., Bott, C., 2015. Improving settleability and enhancing biological phosphorus removal through the implementation of hydrocyclones, Proceedings of the Water Environment Federation, 6171-6179. 

  33. Xu, J., Sun, Y., Liu, Y., Yuan, W., Dai, L., Xu, W., Wang, H., 2019, In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone, Sci. Total Environ., 695, 133825. 

  34. Yamamoto, T., Oshikawa, T., Yoshida, H., Fukui, K., 2016, Improvement of particle separation performance by new type hydrocyclone, Sep. Purif. Technol., 158, 223-229. 

  35. Yang, C., Zhang, W., Liu, R., Li, Q., Li, B., Wang, S., Song, C., Qiao, C., Mulchandani, A., 2011, Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants, Environ, sci, technol., 45, 7408-7415. 

  36. Zhang, W., Jiang, F., 2019, Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size, Water Res., 157, 445-453. 

  37. Zhou, J. H., Zhang, Z. M., Zhao, H., Yu, H. T., Alvarez, P. J., Xu, X. Y., Zhu, L., 2016, Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress, Bioresour. Technol., 216, 562-570. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로