$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Cr 첨가가 고망간강의 중성 수용액 환경 내 유동가속부식 거동에 미치는 영향
Effect of Cr Addition to High Mn Steel on Flow-Accelerated Corrosion Behaviors in Neutral Aqueous Environments 원문보기

Corrosion science and technology, v.20 no.6, 2021년, pp.373 - 383  

정영재 (순천대학교 신소재공학과) ,  박진성 (순천대학교 신소재공학과) ,  방혜린 (순천대학교 신소재공학과) ,  이순기 (포스코 기술연구원) ,  최종교 (포스코 기술연구원) ,  김성진 (순천대학교 신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

The effect of Cr addition to high Mn steel on flow-accelerated corrosion (FAC) behavior in a neutral aqueous environment was evaluated. For comparison, two types of conventional ferritic steels (API X70 steel and 9% Ni steel) were used. A range of experiments (electrochemical polarization and impeda...

주제어

표/그림 (10)

참고문헌 (29)

  1. Y. H. Lee, H. M. Lee, Y. I. Kim, and S. H. Nahm, Mechanical degradation of API X65 pipeline steel by exposure of hydrogen gas, Metals and Materials International, 17, 389 (2011). Doi: https://doi.org/10.1007/s12540-011-0614-1 

  2. S. U. Koh, H. G. Jung, and K. B. Kang, Effect of nonmetallic inclusion and hot rolling process parameters on hydrogen induced cracking of linepipe steels, Journal of Korea Institute of Metals and Materials, 46, 257 (2008). https://www.koreascience.or.kr/article/JAKO200836439080970.page 

  3. X. Li, J. Liu, J. Sun, X. Lin, C. Li, and N. Cao, Effect of microstructural aspects in the heat-affected zone of high strength pipeline steels on the stress corrosion cracking mechanism: Part I. In acidic soil environment, Corrosion Science, 160, 1081671 (2019). Doi: https://doi.org/10.1016/J.CORSCI.2019.108167 

  4. L. A. D. Oliveira, O. V. Correa, D.J. D. Santos, A. A. Z. Paez, M. C. L. D. Oliveira, and R. A. Antunes, Effect of silicate-based films on the corrosion behavior of the API 5L X80 pipeline steel, Corrosion Science, 139, 21 (2018). Doi: https://doi.org/10.1016/j.corsci.2018.04.035 

  5. Y. J. Jeong, M.S. Thesis, pp. 13-17, Sunchon National University, Suncheon (s). 

  6. L. Zeng, G. A. Zhang, and X. P. Guo, Erosion-corrosion at different locations of X65 carbon steel elbow, Corrosion Science, 85, 318 (2014). Doi: https://doi.org/10.1016/j.corsci.2014.04.045 

  7. M. M. Stack and G. H. Abdulrahman, Mapping erosion-corrosion of carbon steel in oil-water solution: Effect of velocity and applied potential, Wear, 274-275, 401 (2012). Doi: https://doi.org/10.1016/j.wear.2011.10.008 

  8. R. C. Barik, J. A. Wharton, R. J. K. Wood, and K. R. Stokes, Electro-mechanical interactions during erosion-corrosion, Wear, 267, 1900 (2009). Doi: https://doi.org/10.1016/j.wear. 2009.03.011 

  9. G. W. Park, H. Jo, M. Park, B. J. Kim, W. Lee, S. Shin, S. S. Park, Y. S. Ahn, and J. B. Jeon, Effect of heat treatment and drawing on high-manganese steel pipe welded by gas tungsten arc, Metals, 10, 1366 (2020). Doi: https://doi.org/10.3390/met10101366 

  10. G. Park, S. Jeong, H. Kang, and C. Lee, Improvement of circumferential ductility by reducing discontinuities in a high-Mn TWIP steel weldment, Materials Characterization, 139, 293 (2018). Doi: https://doi.org/10.1016/j.matchar.2018.03.009 

  11. S. G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, Journal of Physical and Chemical Reference Data, 18, 1 (1989). Doi: https://doi.org/10.1063/1.555839 

  12. S. Fajardo, I. Llorente, J. A. Jimenez, J. M. Bastidas, and D. M. Bastidas, Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution, Corrosion Science, 154, 246 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.04.026 

  13. S. O. Kim, J. K. Hwang, and S. J. Kim, Effect of alloying elements (Cu, Al, Si) on the electrochemical corrosion behaviors of TWIP steel in a 3.5% NaCl solution, Corrosion Science and Technology, 18, 300 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.300 

  14. P. H. Refait, M. Abdelmoula, and J. M. R. Genin, Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions, Corrosion Science, 40, 1547 (1998). Doi: https://doi.org/10.1016/S0010-938X(98)00066-3 

  15. X. M. Zhu and Y. S. Zhang, Investigation of the electrochemical corrosion behavior and passive film for Fe-Mn, Fe-Mn-Al, and Fe-Mn-Al-Cr Alloys in aqueous solutions corrosion, Corrosion, 54, 3 (1998). Doi: https://doi.org/10.5006/1.3284826 

  16. Y. Hyun and H. Kim, Effects of alloying elements on the corrosion properties of high strength steel in a sour environment, Journal of the Korean Institute of Metals and Material, 54, 885 (2016). Doi: https://doi.org/10.3365/KJMM.2016.54.12.885 

  17. K. Asami and M. Kikuchi, Characterization of rust layers on weathering steels air-exposed for a long period, Materials Transactions, 43, 2818 (2002). Doi: https://doi.org/10.2320 /matertrans.43.2818 

  18. C. Wagner and W. Traud, Uber die Deutung von Korrosionsvorgangen durch Uberlagerung von elektrochemischen Teilvorgangen und uber die Potentialbildung an Mischelektroden, Zeitschrift fur Elektrochemie und angewandte physikalische Chemie, 44, 391 (1938). Doi: https://doi.org/10.1002/bbpc.19380440702 

  19. M. Stern and A. L. Geary, Electrochemical polarization: I. A theoretical analysis of the Shape of polarization curves, Journal of the electrochemical society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496 

  20. Y. Mehta, S. Trivedi, K. Chandra, and P. S. Mishra, Effect of silicon on the corrosion behavior of powder-processed phosphoric irons, Journal of Minerals and Materials Characterization and Engineering, 9, 855 (2010). Doi: https://doi.org/10.4236/jmmce.2010.910062 

  21. Y. J. Jeong, S. O. Kim, J. S. Park, J. W. Lee, J. K. Hwang, S. G. Lee, J. K. Choi, and S. J. Kim, Strong and ductile Fe-24Mn-3Cr alloy resistant against erosion-corrosion, Materials Degradation, 5, 47 (2021). Doi: https://doi.org/10.1038/s41529-021-00195-0 

  22. M. B. Kannan, R. K. S. Raman, and S. Khoddam, Comparative studies on the corrosion properties of a Fe-MnAl-Si steel and an interstitial-free steel, Corrosion Science, 50, 2879 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.07.024 

  23. D. A. Lopez, S. N. Simison, and S. R. de Sanchez, Inhibitors performance in CO 2 corrosion: EIS studies on the interaction between their molecular structure and steel microstructure, Corrosion Science, 47, 735 (2005). Doi: https://doi.org/10.1016/j.corsci.2004.07.010 

  24. S. Nesic, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 2: a numerical experiment, Corrosion, 59, 489 (2003). Doi: https://doi.org/10.5006/1.3277579 

  25. J. Flis, H. W. Pickering, and K. Osseo-Asare, Interpretation of impedance data for reinforcing steel in alkaline solution containing chlorides and acetates, Electrochemical Acta, 43, 1921 (1998). Doi: https://doi.org/10.1016/S0013-4686(97)10004-4 

  26. S. B. Shin, S. J. Song, Y. W. Shin, J. G. Kim, B. J. Park, and Y. C. Suh, Effect of molybdenum on the corrosion of low alloy steels in synthetic seawater, Materials Transactions, 57, 2116 (2016). Doi: https://doi.org/10.1016/j.corsci.2008.07.024 

  27. A. L. Morales, C. A. B. Meneses, F. Jaramillo, C. Arroyave, and J. M. Greneche, Properties of goethite grown under the presence of Cr 3+ , Cu 2+ and Mn 2+ ions, Hyperfine Interactions, 148-149, 135 (2003). Doi: https://doi.org/10.1023/B:HYPE.0000003774.23704.52 

  28. J. A. V. Orman and K. L. Crispin, Diffusion in Oxides, Reviews in Mineralogy and Geochemistry, 72, 757 (2010). Doi: https://doi.org/10.2138/rmg.2010.72.17 

  29. F. Lantelme, A. Derja, and N. Kumagai, Electroreduction of Ni 2+ and Fe 2+ in a fused electrolyte formation of a two-component alloy and the role of the underpotential deposition, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 248, 369 (1988). Doi: https://doi.org/10.1016/0022-0728(88)85097-6 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로