$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry 원문보기

Journal of microbiology and biotechnology, v.31 no.1, 2021년, pp.70 - 78  

Yang, Ji-Su (Hygienic Safety and Analysis Center, World Institute of Kimchi) ,  Lee, Hae-Won (Hygienic Safety and Analysis Center, World Institute of Kimchi) ,  Song, Hyeyeon (Hygienic Safety and Analysis Center, World Institute of Kimchi) ,  Ha, Ji-Hyoung (Hygienic Safety and Analysis Center, World Institute of Kimchi)

Abstract AI-Helper 아이콘AI-Helper

Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Therefore, in this study, we used automated HS-SPME-GC–MS-based extracellular metabolomics as an analytical approach for identifying VCs related to PCC in cabbage. The study was conducted to determine whether HS-SPME-GC-MS could differentiate VCs emitted from cabbage samples under different conditions by measuring their headspace volatiles. We also characterized the VC profiles and determined the specific volatile metabolic markers of different sample groups (fresh cabbage without external infection symptoms and artificially infected cabbage showing external infection symptoms, at different storage temperatures) using GC-MS at the laboratory scale.
본문요약 정보가 도움이 되었나요?

참고문헌 (39)

  1. 1 Vivaldo G Masi E Taiti C Caldarelli G Mancuso S 2017 The network of plants volatile organic compounds Sci. Rep. 7 11050 10.1038/s41598-017-10975-x 28887468 

  2. 2 Morath SU Hung R Bennett JW 2012 Fungal volatile organic compounds: a review with emphasis on their biotechnological potential Fungal Biol. Rev. 26 73 83 10.1016/j.fbr.2012.07.001 

  3. 3 Strobel G 2011 Muscodor species-endophytes with biological promise Phytochem. Rev. 10 165 172 10.1007/s11101-010-9163-3 

  4. 4 Li Q Ning P Zheng L Huang J Li G Hsiang T 2012 Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit Biol. Control. 61 113 120 10.1016/j.biocontrol.2011.10.014 

  5. 5 Zheng M Shi J Shi J Wang Q Li Y 2013 Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos Biol. Control. 65 200 206 10.1016/j.biocontrol.2013.02.004 

  6. 6 Lui L Vikram A Hamzehzarghani H Kushalappa AC 2005 Discrimination of three fungal diseases of potato tubers based on volatile metabolic profiles developed using GC/MS Potato Res. 48 85 96 10.1007/BF02733684 

  7. 7 Laothawornkitkul J Jansen RMC Smid HM Bouwmeester HJ Muller J van Bruggen AHC 2010 Volatile organic compounds as a diagnostic marker of late blight infected potato plants: a pilot study Crop Prot. 29 872 878 10.1016/j.cropro.2010.03.003 

  8. 8 Toth IK Bell KS Holeva MC Birch PR 2003 Soft rot Erwiniae: from genes to genomes Mol. Plant Pathol. 4 17 30 10.1046/j.1364-3703.2003.00149.x 20569359 

  9. 9 Davidsson Pär R. Kariola Tarja Niemi Outi Palva Tapio 2013 Pathogenicity of and plant immunity to soft rot pectobacteria Front. Plant Sci. 4 191 10.3389/fpls.2013.00191 23781227 

  10. 10 Blasioli S Biondi E Samudrala D Spinelli F Cellini A Bertaccini A 2014 Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples J. Agric. Food Chem. 62 337 347 10.1021/jf403436t 24313381 

  11. 11 Turner AP Magan N 2004 Electronic noses and disease diagnostics Nat. Rev. Microbiol. 2 161 166 10.1038/nrmicro823 15040263 

  12. 12 Li C Schmidt NE Gitaitis R 2011 Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS LWT Food Sci. Technol. 44 1019 1025 10.1016/j.lwt.2010.11.036 

  13. 13 Rutolo MF Iliescu D Clarkson JP Covington JA 2016 Early identification of potato storage disease using an array of metal-oxide based gas sensors Postharvest Biol. Technol. 116 50 58 10.1016/j.postharvbio.2015.12.028 

  14. 14 Concina I Falasconi M Gobbi E Bianchi F Musci M Mattarozzi M et al 2009 Early detection of microbial contamination in processed tomatoes by electronic nose Food Control. 20 873 880 10.1016/j.foodcont.2008.11.006 

  15. 15 Balasubramanian S Panigrahi S Kottapalli B Wolf-Hall CE 2007 Evaluation of an artificial olfactory system for grain quality discrimination LWT Food Sci. Technol. 40 1815 1825 10.1016/j.lwt.2006.12.016 

  16. 16 Cecchi L Ieri F Vignolini P Mulinacci N Romani A 2020 Characterization of volatile and flavonoid composition of different cuts of dried onion ( Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD Molecules 25 408 10.3390/molecules25020408 31963728 

  17. 17 Kailemia MJ Park M Kaplan DA Venot A Boons GJ Li L et al 2014 High-field asymmetric-waveform ion mobility spectrometry and electron detachment dissociation of isobaric mixtures of glycosaminoglycans J. Am. Soc. Mass Spectrom. 25 258 268 10.1007/s13361-013-0771-1 24254578 

  18. 18 Arthur CL Pawliszyn J 1990 Solid phase microextraction with thermal desorption using fused silica optical fibers Anal. Chem. 62 2145 2148 10.1021/ac00218a019 

  19. 19 Marsili RT 1999 SPME− MS− MVA as an electronic nose for the study of off-flavors in milk J. Agric. Food Chem. 47 648 654 10.1021/jf9807925 10563947 

  20. 20 Vas G Vékey K 2004 Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis J. Mass Spectrom. 39 233 254 10.1002/jms.606 15039931 

  21. 21 Hwang YS Lee HW Chang JY Seo HY 2018 Characterization of Kimchi flavor with preconcentration by headspace solid-phase microextraction and stir bar sorptive extraction and analysis by gas chromatography-mass spectrometry Anal. Lett. 52 1247 1257 10.1080/00032719.2018.1530256 

  22. 22 Portier P Pédron J Taghouti G Fischer-Le SM Caullireau E Bertrand C 2019 Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants Int. J. Syst. Evol. Microbiol. 69 3207 3216 10.1099/ijsem.0.003611 31343401 

  23. 23 Jeong SG Lee JY Yoon SR Moon EW Ha JH 2019 A quantitative PCR based method using propidium monoazide for specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum in kimchi cabbage ( Brassica rapa L. subsp. pekinensis ) LWT 113 108327 10.1016/j.lwt.2019.108327 

  24. 24 Chong J Soufan O Li C Caraus I Li S Bourque G et al 2018 MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis Nucleic Acids Res. 46 W486 W494 10.1093/nar/gky310 29762782 

  25. 25 Bhat KA Masoodi SD Bhat NA Ahmad M Zargar MY Mir SA et al 2010 Studies on the effect of temperature on the development of soft rot of cabbage ( Brassica oleracea var. capitata) caused by Erwiniacarotovora sub sp. Carotovora J. Phytol. 2 64 67 

  26. 26 Agrios GN Dieg S 2005 Bacterial soft rots Plant Pathology 5th Ed Academic press London 656 

  27. 27 Smadja B Latour X Trigui S Burini JF Chevalier S Orange N 2004 Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies ( Pectobacterium spp.) Can. J. Microbiol. 50 19 27 10.1139/w03-099 15052318 

  28. 28 Salmond NGPC. Singh US Singh RP Kohmoto K 1995 Bacterial soft rots Pathogenesis and host specificity in plant disease Vol. I. Pergamon Press Ltd. Oxford, UK 1 20 10.1016/B978-0-08-042510-8.50008-X 

  29. 29 Molina JJ Harrison MD 1977 The role of Erwinia carotovora in the epidemiology of potato blackleg. I. Relationship of E. carotovora var. carotovora and E. carotovora var. atrospetica to potato blackleg in Colorado Am. Potato J. 54 587 591 10.1007/BF02855286 

  30. 30 Heikinheimo R Flego D Pirhonen M Karlsson M-B Eriksson A Mäe A et al 1995 Characterization of a novel pectate lyase from Erwinia carotovora subsp. carotovora Mol. Plant-Microbe Interact. 8 207 217 7756691 

  31. 31 Chen T Cao Y Zhang Y Liu J Bao Y Wang C et al 2013 Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection Evid. Based Complement. Alternat. Med. 2013 298183 10.1155/2013/298183 23573122 

  32. 32 Li X Xu Z Lu X Yang X Yin P Kong H et al 2009 Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus Anal. Chim. Acta 633 257 262 10.1016/j.aca.2008.11.058 19166731 

  33. 33 Effantin G Rivasseau C Gromova M Bligny R Hugouvieux-Cotte-Pattat N 2011 Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium Mol. Microbiol. 82 988 997 10.1111/j.1365-2958.2011.07881.x 22032684 

  34. 34 Mateo JJ Jiménez M Pastor A Huerta T 2001 Yeast starter cultures affecting wine fermentation and volatiles Food Res. Int. 34 307 314 10.1016/S0963-9969(00)00168-X 

  35. 35 Radványi D Gere A Jókai Z Fodor P 2015 Rapid evaluation technique to differentiate mushroom disease-related moulds by detecting microbial volatile organic compounds using HS-SPME-GC-MS Anal. Bioanal. Chem. 407 537 545 10.1007/s00216-014-8302-x 25416229 

  36. 36 Marquez-Villavicencio MDP Weber B Witherell RA Willis DK Charkowski AO 2011 The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis PLoS One 6 e22974 10.1371/journal.pone.0022974 21876734 

  37. 37 Kanchiswamy CN Malnoy M Maffei ME 2015 Chemical diversity of microbial volatiles and their potential for plant growth and productivity Front. Plant Sci. 6 151 10.3389/fpls.2015.00151 25821453 

  38. 38 Bauer K Garbe D Surburg H 2001 Common fragrance and flavor materials preparation, properties and uses 4th Ed Wiley-VCH Weinheim, Germany 10.1002/3527600205 

  39. 39 Levey DJ 2004 The evolutionary ecology of ethanol production and alcoholism Integr. Comp. Biol. 44 284 289 10.1093/icb/44.4.284 21676711 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로