$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가
Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound 원문보기

한국구조물진단유지관리공학회 논문집 = Journal of the Korea Institute for Structural Maintenance and Inspection, v.25 no.4, 2021년, pp.56 - 64  

최하진 (숭실대학교 건축학부) ,  김률리 (숭실대학교 건축학과) ,  이종석 (한국건설기술연구원 노후인프라센터) ,  민지영 (한국건설기술연구원 노후인프라센터)

초록
AI-Helper 아이콘AI-Helper

구조체 열화, 손상 등에 의해 발생하는 누수는 동결융해에 의한 체적 변화를 유발하는 주요 원인 중 하나이며, 콘크리트 내부의 미세균열, 표면 스케일링 등을 유발한다. 이러한 손상은 염화물 등 외기 유해물질 침투 및 확산을 가속화시킨다. 시설물 성능평가 세부지침(2020)에서 피복 콘크리트 품질과 동해환경 지표가 새롭게 제시되었으며, 피복 콘크리트 품질은 반발경도시험으로, 동해환경은 동결융해 싸이클 수로 평가한다. 본 논문에서는 빠른 동특성 기반 초음파 비선형성을 통해 동결융해에 의한 초기 미세손상을 평가하고자 하였다. 서로 다른 물-시멘트비(40%, 60%)와 공기량(1.5%, 3.0%)을 가지는 콘크리트 시험체를 제작하고, 동결융해 싸이클 수를 증가시키며 압축강도, 반발경도, 상대동 탄성계수, 초음파 비선형성을 측정하였으며, SEM을 활용하여 미세균열 발생 및 진전을 분석하였다. 그 결과, 상대동탄성계수 및 반발경도로는 확인이 어려웠던 초기 미세손상을 공진주파수 비선형성 측정을 통해 탐지할 수 있었으며, 콘크리트의 동결융해 저항성능을 예측할 수 있다는 가능성을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facili...

주제어

표/그림 (14)

참고문헌 (26)

  1. ASTM International (2002), C215-02(Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens), Annual Book of ASTM Standards. 

  2. Chen, J., Jayapalan, A. R., Kim, J. Y., Kurtis, K. E., and Jacobs, L. J. (2010), Rapid Evaluation of Alkali-Silica Reactivity of Aggregates Using a Nonlinear Resonance Spectroscopy Technique, Cement and Concrete Research, 40(6), 914-923. 

  3. Chung, J.-S., Kim, B.-H., and Kim, I.-S. (2014), A Case Study on Chloride Corrosion for the End Zopne of Concrete Deck Subjected to De-icing Salts Added Calcium Chloride, Journal of the Korean Society of Safety, 29(6), 87-93. 

  4. Eiras, J. N., Monzo, J., Paya, J., Kundu, T., and Popovics, J. S. (2014), Non-Classical Nonlinear Feature Extraction from Standard Resonance Vibration Data for Damage Detection, Journal of the Acoustical Society of America, 135(2), EL82. 

  5. Guyer, R. A., and Johnson, P. A. (2009), Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. Weinheim: Wiley-VCH Verlag Gmbh & Co. 

  6. Hanjari, K. Z., Utgenannt, P., and Lundgren, K. (2011), Experimental study of the material and bond properties of frost-damaged concrete, Cement and Concrete Research, 41, 244-254. 

  7. Jin, J., Moreno, M. G., Riviere, J., and Shokouhi, P. (2017), Impact-Based Nonlinear Acoustic Testing for Characterizing Distributed Damage in Concrete, Journal of Nondestructive Evaluation, 36, 51. 

  8. Jin, J., Xi, W., Riviere, J., and Shokouhi, P. (2019), Single-Impact Nonlinear Resonant Acoustic Spectroscopy for Monitoring the Progressive Alkali-Silica Reaction in Concrete, Journal of Nondestructive Evaluation, 38, 77. 

  9. Johnson, P. A., and Zinszner, B. (1996), Resonance and elastic nonlinear phenomena in rock, Journal of Geophysical Research, 101(B5), 11553-11564. 

  10. Johnson, P. A., Zinszner, B., Rasolofosaon, P., Cohen-Tenoudji, F., and Van Den Abeele, K. E. A. (2004), Dynamic Measurements of the Nonlinear Elastic Parameter α in Rock Under Varying Conditions, Journal of Geophysical Research, 109, B02202. 

  11. Kim, D. S., Park, H. C., and Lee, K. M. (1997), Nondestructive Evaluation of Concrete Members Using Impact Echo Method, Journal of the Korea Concrete Institute, 9(2), 109-119. 

  12. Kim, J. H., Park, S. J., and Yim, H. J. (2019), Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete, Materials (Basel), 12(2), 325. 

  13. Kim, R., and Choi, H. (2021), Slow Dynamic Analysis of PCM-LWA-Mixed Concrete Plate Using Nonlinear Resonant Spectroscopy, Journal of the Korea Concrete Institute, 33(1), 21-30. 

  14. Koh, K. T., Kim, D. G., Kim, S. W., Cho, M. S., and Song, Y. C. (2001), A Compund Deterioration Assessment of Concrete Subjected to Freezing-Thawing and Cloride Attack, Journal of the Korea Concrete Institute, 13(4), 397-405. 

  15. Korea Expressway Corporation (2015), Bridge Maintenance Strategies for Service Life 100 year, Report No. 2015-36-534.9607. 

  16. Korea Standards Association (2013). KS F 2456: 2013(Standard test method for resistance of concrete to rapid freezing and thawing). 

  17. Lesnicki, K. J., Kim, J. Y., Kurtis, K. E., and Jacobs, L. J. (2013), Assessment of Alkali-Silica Reaction Damage Through Quantification of Concrete Nonlinearity, Materials and Structures, 46, 497-509. 

  18. Ministry of Land, Infrastructure, and Transport (2021), Concrete Structural Design Code (KDS 14 20 00). 

  19. Park, S. J., Yim, H. J., and Kwak, H. G. (2012), Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique, Journal of the Korea Concrete Institute, 24(6), 651-658. 

  20. Park, S. J., Yim, H. J., and Kwak, H. G. (2014), Nonlinear Resonance Vibration Method to Estimate the Damage Level on Heat-Exposed Concrete, Fire Safety Journal, 69, 36-42. 

  21. Ten Cate, J. A., Duran, J., and Shankland, T. J. (2002), Nonlinearity and Slow Dynamics in Rocks: Response to Changes of Temperature and Humidity, Nonlinear Acoustics at the Beginning of the 21st Century, 2, 767-770. 

  22. Ten Cate, J. A. (2011), Slow Dynamics of Earth Materials: An Experimental Overview, Pure and Applied Geophysics, 168(12), 2211-2219. 

  23. Van Den Ableele, K. E. A., Carmeliet, J., Ten Cate, J. A., and Johnson, P. A. (2000b), Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part II: Single-Mode Nonlinear Resonance Acoustic Spectroscopy, Journal of Research in Nondestructive Evaluation, 12(1), 31-42. 

  24. Van Den Ableele, K. E. A., Johnson, P. A., and Sutin, A. (2000a), Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS), Journal of Research in Nondestructive Evaluation, 12(1), 17-30. 

  25. Warnemuende, K., and Wu, H. C. (2004), Actively Modulated Acoustic Nondestructive Evaluation of Concrete, Cement and Concrete Research, 34(4), 563-570. 

  26. Yoon, I.-S. (2007), Effect of Micro-Cracks on Chloride Ions Penetration of Concrete: Phonomenological Model, Journal of the Korea Concrete Institute, 19(1), 57-65. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로