$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국도 상 도로시설물 대상 열화환경 조건 별 콘크리트 염화물 침투 특성 분석
Analysis of Chloride Ion Penetration Properties into Concrete on Road Facilities Depending on the Deterioration Environments 원문보기

한국구조물진단유지관리공학회 논문집 = Journal of the Korea Institute for Structural Maintenance and Inspection, v.25 no.5, 2021년, pp.102 - 113  

민지영 (한국건설기술연구원 구조연구본부) ,  이종석 (한국건설기술연구원 구조연구본부) ,  이탁곤 (부산시설공단 기술혁신팀) ,  차기혁 (부산시설공단 기술혁신팀)

초록

「시설물의 안전 및 유지관리 실시 세부지침(성능평가편)」의 내구성능 평가에서 열화환경 평가항목으로 제시된 제설제 및 비래염분에 의한 염해환경, 동해환경이 국내 국도 상 콘크리트 도로시설물의 염화물 침투특성에 미치는 영향을 살펴보았다. 강원 고성, 서울, 경기 고양, 부산에 위치한 교량 총 4개소, 강원권 방호울타리 4개소, 부산권 방호울타리 3개소 및 옹벽 1개소를 대상 시설물로 선정하였으며, 제설제에 의한 직접·간접적인 염해환경, 해안거리 및 교각 높이별 비래염분에 의한 염해환경에서 염화물 침투특성을 분석하였다. 분석 결과, (1) 제설제 살포일수(강설일수)에 따른 지역별 특성이 명확하게 구분되었고, (2) 바닥판 관통 누수 혹은 신축이음부를 통한 누수 등이 발생한 경우 침투 염화물량이 유의미한 수준까지 증가하였으며, (3) 부산 해안가에 위치한 교량의 경우 높이 20m까지 비래염분의 영향권에 해당함을 확인하였다. 이로부터, 동일한 시설물이라도 노출된 열화환경, 부재의 위치 및 높이, 열화진전상태에 따라 염화물 침투특성이 달라지기 때문에 시설물 점검 시 점검대상 부재 및 위치의 선정이 매우 중요함을 확인하였으며, 국내 지역별 및 부재별 열화환경에서의 염화물 침투특성에 관한 데이터베이스를 구축한다면 콘크리트 시설물에 대한 선제적인 내구성능 관리가 가능할 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

The deterioration environments caused by de-icing salt and airborne chlorides in the seashore, evaluated in the "Detailed guideline for safety and management practice of facilities (performance evaluation)", were reviewed in terms of penetrated chlorides into concrete on various road facilities. Tar...

주제어

표/그림 (17)

참고문헌 (15)

  1. Castro, P., De Rincon, O. T., and Pazini, E. J. (2001), Interpretation of Chloride Profiles from Concrete Exposed to Tropical Marine Environments, Cement and Concrete Research, 31(4), 2001, 529-537. 

  2. Irina, S.O., Dubravka, B., and Dunja, M. (2010), Evaluation of Service Life Design Models on Concrete Structures Exposed to Marin Environment, Materials and Structures, 43(10), 1397-1412. 

  3. JSCE-Concrete Committee (2007), Standard Specification for Concrete Structures. 

  4. Kim. J.-S., Jung, S.-H., Kim, J.-H., Lee, K.-M., and Bae, S.-H. (2006), Probability-based Durability Analysis of Concrete Structures under Chloride Attack Environments, Journal of the Korea Concrete Institute, 18(2), 239-248. 

  5. Korea Expressway Corporation Research Institute (2014), A Study on the Durability Design and Assessment of Concrete Structures by Chloride Attack under De-icing Salt Environments, Report No. 2014-43-534.9607. 

  6. Meira, G. R., Andrade, C., Padaratz, I. J., Alonso, C., and Borba Jr., J. C. (2007), Chloride Penetration into Concrete Structures in the Marine Atmosphere Zone-Relationship between Deposition of Chlorides on the Wet Candle and Chlorides Accumulated into Concrete, Cement and Concrete Composites, 29(9), 667-676. 

  7. Min, J., and Lee, J.-S. (2021), Correlation Analysis between Airborne and Penetrated Chlorides into Concrete on the West Coast of Korea, Journal of the Korea Concrete Institute, 33(1), 3-9. 

  8. Mustafa, M. A., and Yusof, K. M. (1994), Atmospheric Chloride Penetration into Concrete in Semitropical Marine Environment, Cement and Concrete Research, 24(4), 661-670. 

  9. Swatekititham, S. (2004), Computational Model for Chloride Concentration on Concrete Surface under Actual Environmental Condition, PhD Dissertation, Kochi University. 

  10. Lee, B.-D., Choi, Y.-S., Kim. Y.-G., Choi, J.-S., and Kim, I.-S. (2016), A Study on the Durability Improvement of Highway-Subsidiary Concrete Structure Exposed to Deicing Salt and Freeze-Thaw, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(4), 128-135. 

  11. Lee, J.-S., and An, G.-H. (2012), Penetration Properties of Airborne Chlorides on Concrete Exposed in Marine Environment, Journal of the Korea Concrete Institute, 24(5), 553-558. 

  12. Oh, K.-S., Kim, Y.-J., Lee, S.-H., and Kwon, S.-J. (2016), Service Life Evaluation Considering Height of RC Structures and Distance from Sea Shore, Journal of Recycled Construction Resources, 4(2), 172-179. 

  13. Public Works Research Institute (1985), Nationwide Investigation of Airborne Chlorides (I), Materials of Public Works Research Institute, 2203. 

  14. Roy, S. K., Chye, L. K., and Northwood, D. O. (1993), Chloride Ingress in Concrete as Measured by Field Exposure Tests in the Atmospheric, Tidal and Submerged Zones of a Tropical Marine Environment, Cement and Concrete Research, 23(6), 1289-1306. 

  15. Thomas, M. D. A, and Bentz, E. C. (2002), Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed To Chlorides, Life365 Manual, SFA, 2-28. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로