$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

차세대 회전익 기본개념설계/통합해석 프로그램의 개발
Development of Preliminary Conceptual Design/ Comprehensive Analysis Programs for Next Generation Rotorcraft 원문보기

한국항공우주학회지 = Journal of the Korean Society for Aeronautical & Space Sciences, v.49 no.1, 2021년, pp.75 - 84  

오세종 (Department of Aerospace engineering, Pusan National University) ,  박동훈 (Department of Aerospace engineering, Pusan National University) ,  지형민 (Department of Combat Development)

초록

저자는 이전 두 편의 논문[1,2]을 통하여 미국과 유럽의 헬리콥터/회전익 개발에 대한 현황을 발표하였다. 그러나, 최근 세계적으로 진행되고 있는 차세대 회전익의 개발은, 이제까지 전통적으로 사용되었던 헬리콥터의 단점을 보완하는 새로운 형상(틸트 로터, 동축반전, 복합형)의 회전익 수직 이착륙기들이 나타나고 있다. 이러한 새로운 형상의 회전익 개발을 위해서는, 이제까지 전통적인 헬리콥터 개발에 사용되었던 기본개념설계/통합해석 프로그램을 한 단계 업그레이드한 새로운 설계/해석 프로그램이 필요하다. 미국과 유럽에서는 이미 반세기 이상 자체 축적되었던 기술 및 데이터 베이스를 이용하여 새로운 개발 프로그램들이 만들어지고 있다. 국내에서도 지난 20여 년간 헬리콥터와 다양한 형상의 회전익 개발이 이루어지면서 국내 연구진들에 의해 요소기술(공력, 구조해석 및 동역학, 비행역학, 소음해석 등 분야)들이 개발되었고 여전히 진행 중이다. 이들 개발된 요소기술들의 성숙도는 해외 선진국에 상응하는 정도이다. 본 논문에서는 미국/유럽에서 사용되고 있는 차세대 회전익 개발에 사용되는 기본개념설계/통합해석 프로그램들에 대한 장/단점들을 요약해 보고, 또한 앞에서 언급한 국내 연구진들에 의해 축적된 기술들에 대한 평가와, 이들을 통합하여 우리자체의 기본개념설계/통합해석 프로그램을 개발하는 가능성과 문제점들을 조사해 보았다.

Abstract AI-Helper 아이콘AI-Helper

The authors had presented two previous papers[1,2] on Helicopter/Rotorcraft develoment in Europe and US. Meanwhile, the next generation rotorcrafts, currently under development in US and Europe, have new configurations (tilt-rotor, coaxial, compound) of rotor-type vertical takeoff/landing rotorcraft...

주제어

참고문헌 (75)

  1. Oh, S. J. and Kim, S. H., "Next Generation Rotorcraft Technologies in USA and Europe," Journal of The Korean Society for Aeronautical and Space Science, Vol. 42, No. 8, 2014, pp. 713-721. 

  2. Oh, S. J. and Park, D. H., "Development of European Rotorcraft in 21st Century," Journal of The Korean Society for Aeronautical and Space Science, Vol. 46, No. 8, 2018, pp. 679-686. 

  3. Friedmann, P. P., "Rotary-Wing Aeroelasticity : Current Status and Future Trends," AIAA Journal, Vol. 42, No. 10, 2004, pp. 1953-1972. 

  4. Lier, M., et al, "A Toolbox for Rotorcraft Preliminary Design," AHS 71st Annual Forum, 2015. 

  5. McLean, C. and Schoemaker, A., "For Data Centers, Design with Construction Safety in Mind," Facilitiesnet, August 2019. 

  6. Kim, J., "Consideration of International Competitiveness of Korean Aerospace Business," KSAS Aerodynamics Workshop, 2014. 

  7. Lee, D. J., "Surion and Helicopter accidents in Foreign Countries," KSAS Summer Rotorcraft Workshop, 2017. 

  8. Tegler, J., "Noise Alert," Aerospace America, Sepetember 2020. 

  9. Helicopter Noise Reduction Technology, ICAO Report, April 2015. 

  10. https://en.wikipedia.org/wiki/Future_Vertical_Lift 

  11. Hwang, C., "Current Industrial and Technological Trends in Aerospace," Aerospace Issues, Vol. 16, No. 1, 2018. 

  12. Helicopter Noise Reduction Technology, Status, Report by Snecma, Airbus Helicopter, Sikorsky Aircraft, Bell Helicopter, AgustaWestland, Turbomeca, Marenco Swisshelicopter, 2015. 

  13. Johnson, W. and Datta, A., "Requirements for the Next Generation Comprehensive Analysis of Rotorcaft," AHS Specialist's Conference on Aeromechanics, San Francisco, January 23-25, 2008. 

  14. Yamaguchi, G. K. and Yung, L. A., "A Status of NASA Rotorcraft Research," NASA/TP-2009-215369, 2009. 

  15. Helicopter Aeromechanics, AGARD LS No. 139, 1985. 

  16. Wayne Johnson, "Milestones in Rotorcraft Aeromechanics," NASA/TP-2011-0215971. 

  17. Ji, H. M., "Comments on Comprehensive Analysis and Design Program for Next Generation Korean Rotorcrafts," R.O.K. Army Training & Doctrine Command, 2020. 

  18. Johnson, W., NDARC : NASA Design and Analysis of Rotorcraft, Theory, 2012. 

  19. Lee, C. Y., Ko, K. H., Jung, S. N. and Yu, Y. H., "Preliminary design and cost estimation of helicopters," Journal of The Korean Society for Aeronautical and Space Science, Vol. 38, No. 4, 2010, pp. 309-314. 

  20. Kim, S. B. and Choi, J. S., "A Study on Establishment of the Helicopter Initial Design Model Using the Modified Weight Estimation Equation," Journal of The Korean Society for Aeronautical and Space Science, Vol. 43, No. 3, 2015, pp. 213-223. 

  21. Schwartzberg, M. A., Smith, R. L., Means, J. L., Law, H. Y. H. and Chappell, D. P., "Single-Rotor Helicopter Design and Performance Estimation Program (SSP)," SRIO Report No. 77-1, 1977. 

  22. Davis, S. J., Rosenstein, H., Stanzione, K. A. and Wisniewski, J. S., "User's Manual for HESCOMP, The Helicopter Sizing and Performance Computer Program," Boeing Vertol Company, Report No. NADC-78265-60, 1979. 

  23. Schoen, A. H., Rosenstein, H., Stanzione, K. and Wisniewski, J. S., "The V/STOL Aircraft Sizing and Performance Computer Program," Boeing report, 1980. 

  24. Georgia Tech Preliminary Design and Performance (GTPDP) program User's Manual, 2003. 

  25. Russel, C. and Basset, P., "Conceptual Design of Environmentally Friendly Rotorcraft-A Comparison of NASA and ONERA Approaches," AHS 71st Annual Forum, 2015. 

  26. Joo, J., Kim, D. K. and Rhiu, J. J., "Basic study on the Conceptual Design of Multi-purpose Helicopter," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 1999, pp. 291-294. 

  27. Chang, S., Jeon, K. S., Kang, H. J., Yu, Y. H. and Lee, J. W., "Development of Rotorcraft conceptual Design and Performance Analysis Code," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2005, pp. 1092-1095. 

  28. Choi, W., Hwang, Y. S., Kim, C. H., Kim, S. H., Lee, D. H. and Park, C. W., "The Development of the Rotorcraft Multidisciplinary Design Optimization Framework and Conceptual Design Using the KHP-SDM RMDO" Journal of The Korean Society for Aeronautical and Space Science, Vol. 37, No. 7, 2009, pp. 685-692. 

  29. Lim, J., Kim, J. M. and Shin, S. J., "Development of an Improved Optimization Framework for the Preliminary Design of a Rotorcraft" Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2012, pp. 554-559. 

  30. Go, K. M., Kang, S. E., Kim, S. H., Lee, D. H., Jang, Y. J., Choi, W., Hang, Y. S. and Kim, C. H., "Performance Analysis and Optimization using Helicopter Design and Analysis Program," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2007, pp. 624-628. 

  31. Kim, W. J., Chae, S. H., Oh, S. J., Kim, S. B., Ahn, I. K. and Yee, K. J., "Systematic Determination of Empirical Parameters Used in Helicopter Conceptual Design," Journal of The Korean Society for Aeronautical and Space Science, Vol. 40, No. 8, 2012, pp. 703-710. 

  32. Chae, S. H., Lee, J. B., Yee, K. J. and Oh, S. J., "Helicopter Performance Analysis on External Armed Configuration," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2012, pp. 2428-2434. 

  33. Du Val, R. W. and He, C., "Validation of the FLIGHTLAB virtual engineering toolset," The Aeronautical Journal, Vol. 122, Issue 1250, 2018, pp. 519-555. 

  34. Johnson, W., "A History of Rotorcraft Comprehensive Analyses," NASA/TP-2012-216012, 2012. 

  35. Chopra, I., "Center for Rotorcraft Education and Research," US Army report AD-A266760, 1993. 

  36. Sopher, R. and Twomey, W. J., "Calculation of Flight Vibration Levels of the AH-1G Helicopter and Correlation with Existing Flight Vibration Measurements," NASA CR-182031, 1990. 

  37. Yen, J. G., Corrigan, J. J., Schillings, J. J. and Hsieh, P. Y., "Comprehensive Analysis Methodology at Bell Helicopter : COPTER," AHS Aeromechanics Specialists Conference, January 1994. 

  38. Benoit, B., Dequin, A. M. and Kampa, K., "HOST, a General Helicopter Simulation Tool for Germany and France," AHS 56th Annual Forum, May 2-4, 2000. 

  39. johnson-aeronautics.com/documents/CAMRADII 

  40. Kim, K. C., "Analytical Calculation of Helicopter Rotor Blade Flight Loads in Hover and Forward Flight," ARL-TR-3180, 2004. 

  41. Bir, G. S., "Structural Dynamics Verification of Rotorcraft Comprehensive Analysis System (RCAS), NREL/TP-500-35328, 2005. 

  42. Bauchau, O. A., Bottasso, C. L. and Nikishkow, Y. G., "Modeling Rotorcraft Dynamics with Finite Element Multibody Procedure," Mathematical and Computer Modeling, Vol. 33, 2001, pp. 1113-1137. 

  43. Oh, S. J., et al, "Development of Comprehensive Analysis Program for Rotor System," Final Report of Consignment Research of KHP, 2012. 

  44. Mikheyev, S. V., et al, "Ka-50 Attack Helicopter Aerobatic Flight," 24th European Rotorcraft Forum, September 1998. 

  45. Pan, L. and Renliang, C., " A Mathematical Model for Helicopter Comprehensive Analysis," Chinese Journal of Aeronautics, Vol. 23, 2010, pp. 320-326. 

  46. Yavrucuk, I., Tarimci, O., Katircioglu, M., Kubali, E. and Yilmaz, D., "A New Helicopter Simulation and Analysis Tool : HELIDYN+," European Rotorcraft Forum, 2009. 

  47. Avera, M., Kang, H. and Singh, R., "Comprehensive Rotorcraft Analysis for Preliminary Design and Optimization," AHS 71st Annual Forum, 2015. 

  48. Smith, M. J., "Aerodynamics and Aeroelasticity Methodologies for Future Concepts in Vertical Flight," RAES Presentation materials, 2019. 

  49. Thiemeier, J., Ohrle, C., Frey, F., Kessle, M. and Kramer, E., "Aerodynamics and Flight Mechanics Analysis of Airbus Helicopter's Compound Helicopter RACER in hover under crosswind conditions," CEAS Aeronautical Journal, Vol. 11, 2020, pp. 49-66. 

  50. Beaumier, P., van der Wall, B., Pengel, K., Kessler, C., Gervais, M., Delrieux, Y., Hirsch, J. F. and Crozier, P., "From ERATO Basic Research to the Blue Edge TM Rotor Blade : an Example of Virtual Engineering?," Rotorcraft Virtual Engineering, Liverpool, November 8-10, 2016. 

  51. Khalid, A. S., "Development and Implementation of Rotorcraft Preliminary Design Methodology using Multidisciplinary Design optimization," Ph. D. theis, Georgia Institute Technology, 2006. 

  52. Kim, J., "Final Evaluation Report of SUAV," KARI, 2012. 

  53. Requirements of LCH Co-operative Research Proposal, KAI, 2015. 

  54. Kim, Y. S., Choi, S. W. and Kim, J. M., "Trim Analysis of Smart UAV Using CAMRAD II," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, pp. 1010-1014. 

  55. Shin, J. W., Kim, S. J., Lee, S. and Choi, I. H., "Loads Analysis of Smart UAV for Detailed Desing Phase," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2006, pp. 539-542 

  56. Lee, J. J., Kim, J. M., Lim, C. H. and Han, J. W., "Development of Airframe for Smart UAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2008, pp. 410-413. 

  57. Kim, D. H., Lee, J. Y., Kim, Y. S., Lee, M. G. and Kim, S. H., "Rotor Aeroelastic and Whirl Flutter Stability Analysis for Smart-UAV," Journal of The Korean Society for Aeronautical and Space Science, Vol. 34, No. 6, 2006, pp. 75-82. 

  58. Go, J. I., Park, J. S. and Choi, J. S., "Validation Study on Conceptual Design and Performance Analysis for Helicopter using NDARC," Journal of The Korean Society for Aeronautical and Space Science, Vol. 44, No. 10, 2016, pp. 877-886. 

  59. Choi, S., et al, "Final Report of Research for Next Generation Aircraft Technology Integration," KARI, 2018. 

  60. Lee, J., "Development of Improved Rotor Blade Tip Shape using Multidisciplinary Design Analysis and Optimization," European Rotorcraft Forum, Delft, 2018. 

  61. Lee, D., "Necessity and Proposal for Integration of interdisciplinary technology for rotorcraft," KASA winter Rotorcraft workshop, 2017. 

  62. Lee, Y. L., Kim, D. Y., Kim, D. H., Hong, S. B. and Park, J. S., "Vibration Reduction Simulation of UH-60A Helicopter Airframe Using Active Vibration Control System," Journal of The Korean Society for Aeronautical and Space Science, Vol. 48, No. 6, 2020, pp. 443-453. 

  63. Im, B. W., Eun, W. J. and Shin, S. J., "Design and Analysis of Flexbeam in SNUF Blade Equipped with Active Trailing-Edge Flap for Helicopter Vibration Load Reduction," Journal of The Korean Society for Aeronautical and Space Science, Vol. 46, No. 7, 2020, pp. 542-550. 

  64. Nah, D. H., You, Y. H. and Jung, S. N., "A Study on validation of Airloads for an isolated Rotor in High Speed Flight," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2017, pp. 664-665. 

  65. Sa, J. H., Kim, J. W., Park, S. H., Park, J. S., Jung, S. N. and Yu, Y. H., "KFLOW Results of Airloads on HART-II Rotor Blades with Prescribed Blade Deformation," International Journal of Aeronautical and Space Sciences, Vol. 10, No. 2, 2009, pp. 52-62. 

  66. Kim, T. W., Oh, S. J. and Yee, K. J., "Improved actuator surface method for wind turbine application," Renewable Energy, Vol. 76, 2015, pp. 16-26. 

  67. Hahn, D. and Lee, S., "Optimization of Blade Tip Shape for Reducing Noise by Genetic Algorithm," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2017, pp. 488-489. 

  68. Park, M. J., Park, S. H., Lee, H. J. and Lee, D. J., "Development of acoustic code with permeable surface in high-order scheme," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2016, pp. 669-672. 

  69. Yoon, Y. H., Yang, C. D., Kim, C. J. and Jo, I. J., "Flight Dynamic Analysis Program, HETLAS for the Development of Helicopter FBW System" Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, 2012, pp. 1270-1275. 

  70. Jung, S. N., You, Y. H., Kim, J. W., Sa, J. H., Park, J. S. and Park, S. H., "Correlation of Aeroelastic Response and Structural Loads for a Rotor in Descent," Journal of Aircraft, Vol. 49, No. 2, 2012. 

  71. Ryu, H. Y., Shin, S. J., Kwak, J. S., Lee, J. B., Yee, K. J. and Kim, D. K., "Fluid-Structure Combined Analysis for a Helicopter Forward Flight," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2011, pp. 676-679. 

  72. Oh, S., "Introduction to Korean Rotorcraft Developement Program," 6th Asian Australian Rotorcraft Forum, 2017. 

  73. Choi, S. W., "Configuration Design and Performance Analysis for the Sub-scale OPPAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2019, pp. 609-630. 

  74. Hwang, C. and Choi, S., "OPPAV eVTOL Prototype and Certification Technology Development," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2019, p. 547. 

  75. https://www.statista.com/statistics/259396/global-combat-helicopter-fleet-by-country/ 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로