$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성
Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution 원문보기

한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.32 no.1, 2021년, pp.41 - 52  

버링 (군산대학교 나노화학공학과) ,  임형렬 (우석대학교 연료전지 지역혁신센터) ,  이홍기 (우석대학교 연료전지 지역혁신센터) ,  박경세 (군산대학교 화학과) ,  심중표 (군산대학교 나노화학공학과)

Abstract AI-Helper 아이콘AI-Helper

NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries i...

주제어

표/그림 (12)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The electrochemical characterization of the bi functional air electrodes for ORR and OER was conducted in an 8 M KOH solution using a three-elec- trode system. The working electrode was cut into a round shape which area is 1 cm2.
  • In the three-elec- trode system, KOH solution was contact with the catalytic layer and the air went to catalytic layer through the gas diffusion layer (carbon paper). The linear sweep voltammetry (LSV) was conducted to measure current according to cell potential using a potentio- stat/galvanostat (WBCS3000, WonATech Co. Ltd., Seoul, Korea). The cell potential was scanned at a scan rate of 1 mV/s for 20 times between 0.
  • The physical and chemical properties of samples were characterized by X-ray diffraction (XRD, PANalytical, EMPYREAN), field emission-scanning electron microscopy (FE-SEM, SU8220, Hitachi, Tokyo, Japan), X-ray photoelectron spectroscopy (XPS, JEM-ARM200F, JEOL, Tokyo, Japan) and their surface areas were measured using a BET method (BELSORP-MAX, MicrotracBEL Corp, Tokyo, Japan).
  • The stability tests of LCO and LCNx for continuous cycles were conducted at current of 20 mA/cm2 for 2 hours of ORR & OER, respectively. As shown in Fig.

대상 데이터

  • The working electrode was cut into a round shape which area is 1 cm2. The counter and reference electrodes were used a Pt mesh (Alfa Aesar, Haverhill, MA, USA) and a Zn wire (a diameter of 1 mm, Aldrich), respectively. In the three-elec- trode system, KOH solution was contact with the catalytic layer and the air went to catalytic layer through the gas diffusion layer (carbon paper).

이론/모형

  • The surface areas and pore size distributions were estimated by N2 adsorption-desorption isotherms and calculated based on the Brunauer-Emmett-Teller (BET) method, as shown in Fig. 5 and listed in Table 1. The BET specific surface area of LCNx synthesized using porous template are much larger than traditional synthesized perovskite oxides.
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. Y. Li, H. Dai, "Recent advances in zinc-air batteries", Chem. Soc. Rev., Vol. 43, No. 15, 2014, pp. 5257-5275, doi: https://doi.org/10.1039/C4CS00015C. 

  2. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, and X. W. Lou, "Recent advances in metal oxide­based electrode architecture design for electrochemical energy storage", Adv. Mater. Vol. 24, No. 38, 2012, pp. 5166-5180, doi: https://doi.org/10.1002/adma.201202146. 

  3. S. Guo, S. Zhang, and S. Sun, "Tuning nanoparticle catalysis for the oxygen reduction reaction", Angew. Chem. Int. Ed., Vol. 52, No. 33, 2013, pp. 8526-8544, doi: https://doi.org/10.1002/anie.201207186. 

  4. J. H. Yang, H. J. Sun, G. Park, J. C. An, and J. Shim. "Synthesis of highly porous LaCoO 3 catalyst by nanocasting and its performance for oxygen reduction and evolution reactions in alkaline solution", J. Electroceram., Vol. 41, 2018, pp. 80-87, doi: https://doi.org/10.1007/s10832-018-0165-7. 

  5. V. Elayappan, R. Shanmugam, S. Chinnusamy, D. J. Yoo, G. Mayakrishnan, K. Kim, H. S. Noh, M. K. Kim, and H. Lee, "Three-dimensional bimetal TMO supported carbon based electrocatalyst developed via dry synthesis for hydrogen and oxygen evolution", Appl. Surf. Sci., Vol. 505, 2020, pp. 144642, doi: https://doi.org/10.1016/j.apsusc.2019.144642. 

  6. R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chem. Commun., Vol. 50, No. 93, 2014, pp. 14623-14626, doi: https://doi.org/10.1039/C4CC06879C. 

  7. S. Ramakrishnan, M. Karuppannan, M. Vinothkannan, K. Ramachandran, O. J. Kwon, and D. J. Yoo, "Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions", ACS Appl. Mater. Interfaces, Vol. 11, No. 13, 2019, pp. 12504-12515, doi: https://doi.org/10.1021/acsami.9b00192. 

  8. S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A. R. Kim, S. Sengodan, and D. J. Yoo, "Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries", Appl. Cat. B: Environ., Vol. 279, 2020, pp. 119381, doi: https://doi.org/10.1016/j.apcatb.2020.119381. 

  9. Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, "Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application", Nano Lett., Vol. 12, No. 4, 2012, pp. 1946-1952, doi: https://doi.org/10.1021/nl2044327. 

  10. W. G. Hardin, D. A. Slanac, X. Wang, S. Dai, K. P. Johnston, and K. J. Stevenson, "Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes", J. Phys. Chem. Lett., Vol. 4, 2013, pp. 1254-1259, doi: https://doi.org/10.1021/jz400595z. 

  11. Y. Xue, S. Sun, Q. Wang, Z. Donga and Z. Liu, "Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes", J. Mater. Chem. A, Vol. 23, 2018, pp. 10595-10626, doi: https://doi.org/10.1039/c7ta10569j. 

  12. Z. Shao and S. M. Haile, "A high-performance cathode for the next generation of solid-oxide fuel cells", Nature, Vol. 431, 2004, pp. 170-173, doi: https://doi.org/10.1038/nature02863. 

  13. D. Zhang, Y. Song, Z. Du, L. Wang, Y. Li, and J. B. Goodenough, "Active LaNi 1-x FexO 3 bifunctional catalysts for air cathodes in alkaline media", J. Mater. Chem. A, Vol. 3, No. 18, 2015, pp. 9421-9426, doi: https://doi.org/10.1039/C5TA01005E. 

  14. W. Zhou, R. Ran, and Z. Shao, "Progress in understanding and development of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ -based cathodes for intermediate-temperature solid-oxide fuel cells: a review", J. Power Sources, Vol. 192, No. 2, 2009, pp. 231-246, doi: https://doi.org/10.1016/j.jpowsour.2009.02.069. 

  15. K. Lopez, G. Park, H. J. Sun, J. C. An, S. Eom, and J. Shim, "Electrochemical characterizations of LaMO 3 (M Co, Mn, Fe, and Ni) and partially substituted LaNi x M 1-x O 3 (x 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution", J. Appl. Electrochem., Vol. 45, 2015, pp. 313-323, doi: https://doi.org/10.1007/s10800-015-0798-z. 

  16. S. W. Eom, C. W. Lee, M. S. Yun, and Y. K. Sun, "The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes", Electrochim. Acta, Vol. 52, No. 4, 2006, pp. 1592-1595, doi: https://doi.org/10.1016/j.electacta.2006.02.067. 

  17. J. J. Xu, D. Xu, Z. L. Wang, H. G. Wang, L. L. Zhang, and X. B. Zhang, "Synthesis of perovskite­based porous La 0.75 Sr 0.25 MnO 3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries", Angew. Chem. Int. Ed., Vol. 52, No. 14, 2013, pp. 3887-3890, doi: https://doi.org/10.1002/anie.201210057. 

  18. J. Deng, L. Zhang, H. Dai, and C. T. Au, "In situ hydrothermally synthesized mesoporous LaCoO 3 /SBA-15 catalysts: high activity for the complete oxidation of toluene and ethyl acetate", Appl. Cat. A: General, Vol. 352, No. 1-2, 2009, pp. 43-49, doi: https://doi.org/10.1016/j.apcata.2008.09.037. 

  19. K. Kim, K. Lopez, H. J. Sun, J. C. An, G. Park, and J. Shim, "Electrochemical performance of bifunctional Co/graphitic carbon catalysts prepared from metal-organic frameworks for oxygen reduction and evolution reactions in alkaline solution", J. Appl. Electrochem., Vol. 48, 2018, pp. 1231-1241, doi: https://doi.org/10.1007/s10800-018-1245-8. 

  20. J. Shim, K. J. Lopez, H. J. Sun, G. Park, J. C. An, S. Eom, S. Shimpalee, and J. W. Weidner, "Preparation and characterization of electrospun LaCoO 3 fibers for oxygen reduction and evolution in rechargeable Zn-air batteries", J. Appl. Electrochem., Vol. 45, 2015, pp. 1005-1012, doi: https://doi.org/10.1007/s10800-015-0868-2. 

  21. R. Robert, L. Bocher, B. Sipos, M. Dobeli, and A. Weidenkaff, "Ni-doped cobaltates as potential materials for high temperature solar thermoelectric converters", Prog. Solid State Chem., Vol. 35, No. 2-4, 2007, pp. 447-455, doi: https://doi.org/10.1016/j.progsolidstchem.2007.01.020. 

  22. S. Q. Chen and Y. Liu, "LaFe y Ni 1-y O 3 supported nickel catalysts used for steam reforming of ethanol", Int. J. Hydrogen Energy, Vol. 34, No. 11, 2009, pp. 4735-4746, doi: https://doi.org/10.1016/j.ijhydene.2009.03.048. 

  23. M. Mousavi and A. N. Pour, "Performance and structural features of LaNi 0.5 Co 0.5 O 3 perovskite oxides for the dry reforming of methane: influence of the preparation method", New J. Chem., Vol. 43, No. 27, 2019, pp. 10763-10773, doi: https://doi.org/10.1039/C9NJ01805K. 

  24. M. Mao, J. Xu, M. Zhu, Y. Li, and Z. Liu, "Highly efficient catalytic hydrogen production of Co(OH) 2 -modified rare-earth perovskite LaNiO 3 composite under visible light", Appl Nanosci, Vol. 10, 2020, pp. 4361-4374, doi: https://doi.org/10.1007/s13204-020-01343-9. 

  25. J. A. Villoria, M. C. Alvarez-Galvan, S. M. Al-Zahrani, P. Palmisano, S. Specchia, V. Specchia, J. L. G. Fierro, and R. M. Navarro, "Oxidative reforming of diesel fuel over LaCoO 3 perovskite derived catalysts: influence of perovskite synthesis method on catalyst properties and performance", Appl. Catalysis B: Environmental, Vol. 105, No. 3-4, 2011, pp. 276-288, doi: https://doi.org/10.1016/j.apcatb.2011.04.010. 

  26. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni", Appl. Surf. Sci., Vol. 257, No. 7, 2011, pp. 2717-2730, doi: https://doi.org/10.1016/j.apsusc.2010.10.051. 

  27. J. F. Moulder, W. F. Stickle, P. E'Sobol, and K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy", PerkinElmer Corporation, USA, 1992. 

  28. H. Wang, W. Xu, S. Richins, K. Liaw, L. Yan, M. Zhou, and H. Luo, "Polymer-assisted approach to LaCo 1-x Ni x O 3 network nanostructures as bifunctional oxygen electrocatalysts", Electrochim. Acta, Vol. 296, 2019, pp. 945-953, doi: https://doi.org/10.1016/j.electacta.2018.11.075. 

  29. J. Yang and T. Sasaki, "Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating", Chem. Mater., Vol. 20, No. 5, 2008, pp. 2049-2056, doi: https://doi.org/10.1021/cm702868u. 

  30. P. T. Babar, A. C. Lokhande, M. G. Gang, B. S. Pawar, S. M. Pawar, and J. H. Kim, "Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application", J. Ind. Eng. Chem., Vol. 60, 2018, pp. 493-497, doi: https://doi.org/10.1016/j.jiec.2017.11.037. 

  31. J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu, Y. Huang, S. Yan, J. Li, and S. Zhang, "Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction", Energy Environ. Sci., Vol. 12, No. 2, 2019, pp. 739-746, doi: https://doi.org/10.1039/C8EE03208D. 

  32. A. Bergmann, T. E. Jones, E. M. Moreno, D. Teschner, P. Chernev, M. Gliech, T. Reier, H. Dau, and P. Strasser, "Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction", Nature Cat., Vol. 1, 2018, pp. 711-719, doi: https://doi.org/10.1038/s41929-018-0141-2. 

  33. A. Moysiadou, S. Lee, C. S. Hsu, H. M. Chen, and X. Hu, "Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step", J. Am. Chem. Soc., Vol. 142, No. 27, 2020, pp. 11901-11914, doi: https://doi.org/10.1021/jacs.0c04867. 

  34. J. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, and S. Wei, "CoOOH nanosheets with high mass activity for water oxidation", Angew. Chem., Vol. 54, No. 30, 2015, pp. 8722-8727, doi: https://doi.org/10.1002/anie.201502836. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로