$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Evaluation of Injection capabilities of a biopolymer-based grout material

Geomechanics & engineering, v.25 no.1, 2021년, pp.31 - 40  

Lee, Minhyeong (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ,  Im, Jooyoung (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ,  Chang, Ilhan (Department of Civil Systems Engineering, Ajou University) ,  Cho, Gye-Chun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approa...

Keyword

참고문헌 (46)

  1. Akbulut, S. and Saglamer, A. (2002), "Estimating the groutability of granular soils: A new approach", Tunn. Undergr. Sp. Tech., 17(4), 371-380. https://doi.org/10.1016/S0886-7798(02)00040-8. 

  2. ASTM (2019), D2434-19 Standard Test Method for Permeability of Granular Soils (Constant Head), ASTM International, West Conshohocken, Pennsylvania, U.S.A. 

  3. Bell, F. (1993), Engineering Treatment of Soils, CRC Press, Florida, U.S.A. 

  4. Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod., 51 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049. 

  5. Bouazza, A., Gates, W. and Ranjith, P. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique. 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137. 

  6. Burwell, E. (1958), "Cement and clay grouting of foundations: Practice of the corps of engineers", J. Soil Mech. Found. Div. 84(1), 1-22. https://doi.org/10.1061/JSFEAQ.0000099. 

  7. Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1. 

  8. Casas, J.A., Santos, V.E. and Garcia-Ochoa, F. (2000), "Xanthan gum production under several operational conditions: Molecular structure and rheological properties", Enzyme Microb. Tech., 26(2-4), 282-291. https://doi.org/10.1016/S0141-0229(99)00160-X. 

  9. Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030. 

  10. Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475. 

  11. Chang, I., Im, J. and Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251. 

  12. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026. 

  13. Chang, I., Lee, M. and Cho, G.C. (2019), "Global CO 2 emission-related geotechnical engineering hazards and the mission for sustainable geotechnical engineering", Energies. 12(13), 2567. https://doi.org/10.3390/en12132567. 

  14. Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Transport. Geotech., 24, 100385. 

  15. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116. 

  16. Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. (2015), "Soil treatment using microbial biopolymers for anti-desertification purposes", Geoderma, 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006. 

  17. Choi, S.G., Chang, I., Lee, M., Lee, J.H., Han, J.T. and Kwon, T.H. (2020), "Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers", Constr. Build. Mater., 246, 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415. 

  18. DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029. 

  19. Eklund, D. and Stille, H. (2008), "Penetrability due to filtration tendency of cement-based grouts", Tunn. Undergr. Sp. Tech., 23(4), 389-398. https://doi.org/10.1016/j.tust.2007.06.011. 

  20. Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1. 

  21. Gupta, S. and Larson, W. (1979), "A model for predicting packing density of soils using particle­size distribution", Soil Sci. Soc. Am. J., 43(4), 758-764. https://doi.org/10.2136/sssaj1979.03615995004300040028x. 

  22. Ham, S.M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron. Eng., 144(7), 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900. 

  23. Jeon, M.K., Kwon, T.H., Park, J.S. and Shin, J.H. (2017), "In situ viscoelastic properties of insoluble and porous polysaccharide biopolymer dextran produced by Leuconostoc mesenteroides using particle-tracking microrheology", Geomech. Eng., 12(5), 849-862. https://doi.org/10.12989/gae.2017.12.5.849. 

  24. Jin, H., Ryu, B. and Lee, J. (2016), "Development and assessment of laboratory testing apparatus on grouting injection performance", J. Kor. Geoenviron. Soc., 17(10), 23-31. https://doi.org/10.14481/jkges.2016.17.10.23. 

  25. Kim, Y.M., Park, T. and Kwon, T.H. (2019), "Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation", Geomech. Eng., 17(5), 485-496. https://doi.org/10.12989/gae.2019.17.5.485. 

  26. Ko, D. and Kang, J. (2018), "Experimental studies on the stability assessment of a levee using reinforced soil based on a biopolymer", Water, 10(8), 1059. https://doi.org/10.3390/w10081059. 

  27. Kumar, S. (2010), "A study on the engineering behaviour of grouted loose sandy soils", Ph.D. Dissertation, Cochin University of Science, Kochi, India 

  28. Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotechnique Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00106. 

  29. Larson, S., Ballard, J., Griggs, C., Newman, J.K. and Nestler, C. (2010). "An innovative non-ptroleum Rhizobium Tropici biopolymer salt for soil stabilization", Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, Canada. 

  30. Lee, J., Frost, D., Lee, J. and Dremin, A. (1995), "Propagation of nitromethane detonations in porous media", Shock Waves, 5(1-2), 115-119. https://doi.org/10.1007/BF02425043. 

  31. Lee, M., Im, J., Cho, G.C., Ryu, H.H. and Chang, I. (2021), "Interfacial shearing behavior along Xanthan gum biopolymer-treated sand and solid interfaces and its meaning in geotechnical engineering aspects", Appl. Sci., 11(1), 139. https://doi.org/10.3390/app11010139. 

  32. Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445. 

  33. Liu, Z. and Yao, P. (2015), "Injectable shear-thinning xanthan gum hydrogel reinforced by mussel-inspired secondary crosslinking", RSC Adv., 5(125), 103292-103301. https://doi.org/10.1039/C5RA17246B. 

  34. Noh, D.H., Ajo-Franklin, J.B., Kwon, T.H. and Muhunthan, B. (2016), "P and S wave responses of bacterial biopolymer formation in unconsolidated porous media", J. Geophys. Res. Biogeosci., 121(4), 1158-1177. https://doi.org/10.1002/2015JG003118. 

  35. Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785. 

  36. Santagata, M. and Santagata, E. (2003), "Experimental investigation of factors affecting the injectability of microcement grouts", Proceedings of the 3rd International Conference on Grouting and Ground Treatment, New Orleans, Louisiana, U.S.A., Febrauary. 

  37. Santamarina, J.C., Klein, K.A. and Fam, M.A. (2001), Soils and Waves, John Wiley & Sons, Chichester, New York, U.S.A. 

  38. Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Sci. Rep., 10(1), 267. https://doi.org/10.1038/s41598-019-57135-x. 

  39. Sworn, G. (2021), Chapter 27 - Xanthan Fum, in Handbook of Hydrocolloids, Woodhead Publishing 

  40. Tran, A.T.P. (2019), "Characterization of biopolymer-treated soils considering soil-water-hydrogel Interaction", KAIST, Daejeon, Korea. 

  41. Tran, A.T.P., Chang, I. and Cho, G.C. (2019), "Soil water retention and vegetation survivabiity improvement using microbial biopolymers in drylands", Geomech. Eng., 17(5), 475-483. https://doi.org/10.12989/gae.2019.17.5.475. 

  42. USGS (2020), Mineral Commodity Summaries 2020, U.S. Geological Survey: National Minerals Information Center, Reston, Virginia, U.S.A. 

  43. Whiffin, V.S., van Paassen, L.A. and Harkes, M.P. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiol. J., 24(5), 417-423. https://doi.org/10.1080/01490450701436505. 

  44. Xia, S., Zhang, L., Davletshin, A., Li, Z., You, J. and Tan, S. (2020), "Application of polysaccharide biopolymer in petroleum recovery", Polymers, 12(9), 1860. https://doi.org/10.3390/polym12091860. 

  45. Yoon, J. and El Mohtar, C.S. (2014), "Groutability of granular soils using bentonite grout based on filtration model", Transport. Porous Med., 102(3), 365-385. https://doi.org/10.1007/s11242-014-0279-6. 

  46. Zhong, L., Oostrom, M., Truex, M.J., Vermeul, V.R. and Szecsody, J.E. (2013), "Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation", J. Hazard. Mater., 244 160-170. https://doi.org/10.1016/j.jhazmat.2012.11.028. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로