$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Voronoi 입자기반 개별요소모델을 이용한 암석 균열의 열에 의한 미끄러짐 해석: 국제공동연구 DECOVALEX-2023 Task G(Benchmark simulation)
Voronoi Grain-Based Distinct Element Modeling of Thermally Induced Fracture Slip: DECOVALEX-2023 Task G (Benchmark Simulation) 원문보기

터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.31 no.6, 2021년, pp.593 - 609  

박정욱 (한국지질자원연구원) ,  박찬희 (한국지질자원연구원) ,  이창수 (한국원자력연구원)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 입자기반 개별요소모델(grain-based distinct element model, GBDEM)을 이용하여 결정질 암석 내 포함된 균열의 열-역학적 거동을 평가할 수 있는 수치해석기법을 제시하고 열에 의한 균열의 미끄러짐 거동을 해석하였다. 이는 DECOVALEX-2023 프로젝트 Task G의 일환으로 수행된 벤치마크 모델링 연구로, Task G는 결정질 암반 내 균열의 열-수리-역학적 복합거동을 해석하기 위한 수치해석기법을 개발하는 데에 목표가 있다. 여기에서는 Voronoi diagram을 이용하여 다면체 개별입자의 집합체로서 해석모델을 생성하고, 입자 및 입자간 접촉에서 발생하는 열-역학적 거동을 개별요소프로그램인 3DEC을 통해 해석하였다. 암석 시험편의 탄성거동을 재현하기 위하여 등가연속체 개념을 적용하여 입자와 접촉의 미시물성을 산정하였으며, 균열에 상응하는 접촉에는 Coulomb slip model을 부여하여 인장강도와 전단강도를 갖는 불연속면을 모사하였다. 경계응력과 열응력에 의한 균열의 거동을 수치적으로 모델링하였으며, 경계조건에 따라 균열의 미끄러짐이 발생하는 열-역학적 메커니즘을 정량적으로 분석하였다. 해석 결과, 본 연구에서 제시한 해석모델이 암석 내 열팽창과 열응력의 증가, 균열 응력과 변위, 경계조건의 영향 등을 합리적으로 재현하고 있음을 확인하였다. 본 연구의 해석모델은 Task G에 참여하는 국외 연구팀들과의 의견 교류와 워크숍을 통해 지속적으로 개선하는 한편, 향후 실내실험에 적용하여 타당성을 검증할 예정이다.

Abstract AI-Helper 아이콘AI-Helper

We proposed a numerical method for the thermo-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) and simulated thermally induced fracture slip. The present study is the benchmark simulation performed as part of DECOVALEX-2023 Task G, which aims to develop a numer...

주제어

표/그림 (17)

참고문헌 (18)

  1. Fu, T.F., Xu, T., Heap, M.J., Meredith, P.G., and Mitchell, T.M., 2020, Mesoscopic time-dependent behavior of rocks based on three-dimensional discrete element grain-based model. Computers and Geotechnics 121, 103472. 

  2. Geuzaine, C. and Remacle, J. F., 2009, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International journal for numerical methods in engineering 79(11), 1309-1331. 

  3. Ghazvinian, E., Diederichs, M.S., and Quey, R., 2014, 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. Journal of Rock Mechanics and Geotechnical Engineering 6(6), 506-521. 

  4. IAEA, 2011, Geological disposal facilities for radioactive waste. Specific safety guide No. SSG-14, IAEA, Vienna, Austria. 

  5. Itasca Consulting Group Inc., 2021. 3DEC (3 Dimensional Distinct Element Code) online manual. Available at https://www.itascacg.com/software/3DEC 

  6. Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W., 2007, Fundamentals in Rock Mechanics. fourth ed. Oxford: Blackwell publishing. 

  7. Birkholzer, J.T., Tsang, C.F., Bond, A.E., Hudson, J.A., Jing, L., and Stephansson, O., 2019, 25 years of DECOVALEX-Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes. International Journal of Rock Mechanics and Mining Sciences 122, 103995. 

  8. Kim, T., Lee, C., Kim, J.W., Kang, S., Kwon, S., Kim, K.I., Park, J.W., Park, C.H., and Kim, J.S., 2021, Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermohydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste. Tunnel and Underground Space, 31(3), 167-183. 

  9. Lan, H.X., Martin, C.D., and Hu, B., 2010, Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. Journal of Geophysical Research: Solid Earth 115, B1. 

  10. Lee, C., Lee, J., Park, S., Kwon, S., Cho, W.J., and Kim, G.Y., 2020, Numerical analysis of coupled thermo-hydro-mechanical behavior in single-and multi-layer repository concepts for high-level radioactive waste disposal. Tunnelling and Underground Space Technology, 103, 103452. 

  11. Lee, J., Cho, D., Choi, H., and Choi, J., 2007, Concept of a Korean reference disposal system for spent fuels. Journal of Nuclear Science and Technology, 44(12), 1565-1573. 

  12. Park, J.W., Park, C., Song, J. W., Park, E. S., and Song, J. J., 2017, Polygonal grain-based distinct element modeling for mechanical behavior of brittle rock. International Journal for Numerical and Analytical Methods in Geomechanics 41(6), 880-898. 

  13. Park, J.W., Park, C.H., Lee, C., 2021. Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 31(4), 270-288. 

  14. Park, J.W., Park, C.H., Yoon, J.S., and Lee, C., 2020, Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 30(6), 573-590. 

  15. Quey, R., Dawson, P.R., and Barbe, F., 2011, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering, 200(17-20), 1729-1745. 

  16. Sun, C., Zhuang, L., Jung, S., Lee, J., and Yoon, J.S., 2021, Thermally induced slip of a single sawcut granite fracture under biaxial loading. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7(4), 1-13. 

  17. Wang, Z., Wang, T., Wu, S., and Hao, Y., 2021, Investigation of microcracking behaviors in brittle rock using polygonal grain-based distinct method. International Journal for Numerical and Analytical Methods in Geomechanics. 

  18. Zoback, M.D. and Gorelick, S.M., 2012, Earthquake triggering and large-scale geologic storage of carbon dioxide, Proceedings of the National Academy of Sciences of the United States of America 109(26), 10164-10168. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로