$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Direct imposition of the wall boundary condition for simulating free surface flows in SPH

Structural engineering and mechanics : An international journal, v.78 no.4, 2021년, pp.497 - 518  

Park, Hyung-Jun (Department of Mechanical Engineering, Korean Advanced Institute for Science and Technology) ,  Seo, Hyun-Duk (Department of Mechanical Engineering, Korean Advanced Institute for Science and Technology) ,  Lee, Phill-Seung (Department of Mechanical Engineering, Korean Advanced Institute for Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

In this study, a new method for treating the wall boundary in smoothed particle hydrodynamics (SPH) is proposed to simulate free surface flows effectively. Unlike conventional methods of wall boundary treatment through boundary particles, in the proposed method, the wall boundary condition is direct...

Keyword

참고문헌 (57)

  1. Adami, S., Hu, X.Y. and Adams, N.A. (2012), "A generalized wall boundary condition for smoothed particle hydrodynamics", J. Comput. Phys., 231(21), 7057-7075. https://doi.org/10.1016/j.jcp.2012.05.005. 

  2. Ancey, C., Iverson, R.M., Rentschler, M. and Denlinger, R.P. (2008), "An exact solution for ideal dam-break floods on steep slopes", Water Resour. Res., 44(1), 1. https://doi.org/10.1029/2007WR006353. 

  3. Bakti, F.P., Kim, M.H., Kim, K.S. and Park, J.C. (2016), "Comparative study of standard WC-SPH and MPS solvers for free surface academic problems", Int. J. Offshore Polar Eng., 26(03), 235-243. https://doi.org/10.17736/ijope.2016.pf17. 

  4. Bathe, K.J. (2014), Finite Element Procedures, 2nd Edition, Watertown, MA. 

  5. Bierbrauer, F., Bollada, P.C. and Phillips, T.N. (2009), "A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics", Comput. Meth. Appl. Mech. Eng., 198(41-44), 3400-3410. https://doi.org/10.1016/j.cma.2009.06.014. 

  6. Buchner, B. (2002), "Green water on ship-type offshore structures", Ph.D. Dissertation, Delft University of Technology, Delft. 

  7. Chen, Z., Zong, Z., Li, H.T. and Li, J. (2013), "An investigation into the pressure on solid walls in 2D sloshing using SPH method", Ocean Eng., 59, 129-141.https://doi.org/10.1016/j.cma.2009.06.014. 

  8. Chen, Z., Zong, Z., Liu, M.B., Zou, L., Li, H.T. and Shu, C. (2015), "An SPH model for multiphase flows with complex interfaces and large density differences", J. Comput. Phys., 283, 169-188. https://doi.org/10.1016/j.jcp.2014.11.037. 

  9. Colagrossi, A. (2005), "A meshless Lagrangian method for free-surface and interface flows with fragmentation", Ph.D. Dissertation, Universita di Roma, Roma. 

  10. Colagrossi, A. and Landrini, M. (2003), "Numerical simulation of interfacial flows by smoothed particle hydrodynamics", J. Comput. Phys., 191(2), 448-475. https://doi.org/10.1016/S0021-9991(03)00324-3. 

  11. Daly, E., Grimaldi, S. and Bui, H.H. (2016), "Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes", Adv. Water Resour., 97, 156-167. https://doi.org/10.1016/j.advwatres.2016.09.008. 

  12. Eslamian, A. and Khayat, M. (2017), "Numerical studies to propose a ghost particle removed SPH (GR-SPH) method", Appl. Math. Model., 42, 71-99. https://doi.org/10.1016/j.apm.2016.09.026. 

  13. Faltinsen, O.M., Rognebakke, O.F., Lukovsky, I.A. and Timokha, A.N. (2000), "Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth", J. Fluid Mech., 407, 201-234. 

  14. Ferrand, M., Laurence, D.R., Rogers, B.D., Violeau, D. and Kassiotis, C. (2013), "Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method", Int. J. Numer. Meth. Fluid., 71(4), 446-472. https://doi.org/10.1002/fld.3666. 

  15. Francomano, E. and Paliaga, M. (2020), "A normalized iterative smoothed particle hydrodynamics method", Math. Comput. Simul., 176, 171-180. https://doi.org/10.1016/j.matcom.2019.10.004. 

  16. Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to non-spherical stars", Month. Not. Royal Astronom. Soc., 181(3), 375-389. https://doi.org/10.1093/mnras/181.3.375. 

  17. Idelsohn, S.R., Marti, J., Souto-Iglesias, A. and Onate, E. (2008), "Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM", Comput. Mech., 43(1), 125-132. https://doi.org/10.1007/s00466-008-0245-7. 

  18. Kim, S. and Lee, K.H. (2018), "Hydrodynamic analysis of floating structures with baffled ARTs", Struct. Eng. Mech., 68(1), 1-15. http://doi.org/10.12989/sem.2018.68.1.001. 

  19. Ko, Y., Lee, P.S. and Bathe, K.J. (2016), "The MITC4+ shell element and its performance", Comput. Struct., 169, 57-68. https://doi.org/10.1016/j.compstruc.2016.03.002. 

  20. Kulasegaram, S., Bonet, J., Lewis, R.W. and Profit, M. (2004), "A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications", Comput. Mech., 33(4), 316-325. https://doi.org/10.1007/s00466-003-0534-0. 

  21. Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R. and Allahdadi, F.A. (1993), "High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response", J. Comput. Phys., 109(1), 67-75. https://doi.org/10.1006/jcph.1993.1199. 

  22. Liu, G.R. and Liu, M.B. (2003), Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, Singapore. 

  23. Liu, M., Shao, J. and Chang, J. (2012), "On the treatment of solid boundary in smoothed particle hydrodynamics", Sci. China Technol. Sci., 55(1), 244-254. https://doi.org/10.1007/s11431-011-4663-y. 

  24. Liu, M.B. and Liu, G.R. (2010), "Smoothed particle hydrodynamics (SPH): an overview and recent developments", Arch. Comput. Meth. Eng., 17(1), 25-76. https://doi.org/10.1007/s11831-010-9040-7. 

  25. Liu, M.B., Liu, G.R., Lam, K.Y. and Zong, Z. (2003), "Smoothed particle hydrodynamics for numerical simulation of underwater explosion", Comput. Mech., 30(2), 106-118. https://doi.org/10.1007/s00466-002-0371-6. 

  26. Liu, M.B., Liu, G.R., Zong, Z. and Lam, K.Y. (2003), "Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology", Comput. Fluid., 32(3), 305-322. https://doi.org/10.1016/S0045-7930(01)00105-0. 

  27. Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astronom. J., 82, 1013-1024. 

  28. Mirauda, D., Albano, R., Sole, A. and Adamowski, J. (2020) "Smoothed particle hydrodynamics modeling with advanced boundary conditions for two-dimensional dam-break floods", Water, 12(4), 1142. https://doi.org/10.3390/w12041142. 

  29. Monaghan, J.J. (1994), "Simulating free surface flows with SPH", J. Comput. Phys., 110(2), 399-406. https://doi.org/10.1006/jcph.1994.1034. 

  30. Monaghan, J.J. (2005), "Smoothed particle hydrodynamics", Report. Prog. Phys., 68(8), 1703. https://doi.org/10.1146/annurev.aa.30.090192.002551. 

  31. Monaghan, J.J. and Gingold, R.A. (1983) "Shock simulation by the particle method SPH", J. Comput. Phys., 52(2), 374-389. https://doi.org/10.1016/0021-9991(83)90036-0. 

  32. Monaghan, J.J. and Kajtar, J.B. (2009), "SPH particle boundary forces for arbitrary boundaries", Comput. Phys. Commun., 180(10), 1811-1820. https://doi.org/10.1016/j.cpc.2009.05.008. 

  33. Monaghan, J.J. and Kos, A. (1999), "Solitary waves on a Cretan beach", J. Waterw. Port Coast. Ocean Eng., 125(3), 145-155. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145). 

  34. Monaghan, J.J. and Lattanzio, J.C. (1985) "A refined particle method for astrophysical problems", Astron. Astrophys., 149, 135-143. 

  35. Morris, J.P. (1996), "A study of the stability properties of smooth particle hydrodynamics", Publ. Astron. Soc. Australia, 13, 97-102. 

  36. Morris, J.P. (1996), "Analysis of smoothed particle hydrodynamics with applications", Ph.D. Dissertation, Monash University, Melbourne. 

  37. Ozbulut, M., Yildiz, M. and Goren, O. (2014), "A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows", Int. J. Mech. Sci., 79, 56-65. https://doi.org/10.1016/j.ijmecsci.2013.11.021. 

  38. Paik, K.J. and Carrica, P.M. (2014), "Fluid-structure interaction for an elastic structure interacting with free surface in a rolling tank", Ocean Eng., 84, 201-212. https://doi.org/10.1016/j.oceaneng.2014.04.016. 

  39. Seo, H.D., Park, H.J., Kim, J.I. and Lee, P.S. (2021)", The particle-attached element interpolation for density correction in smoothed particle hydrodynamics", Adv. Eng. Softw., 154, 102972. https://doi.org/10.1016/j.advengsoft.2021.102972. 

  40. Shao, J.R., Li, H.Q., Liu, G.R. and Liu, M.B. (2012), "An improved SPH method for modeling liquid sloshing dynamics", Comput. Struct., 100, 18-26. https://doi.org/10.1016/j.compstruc.2012.02.005. 

  41. Shao, S. (2012), "Incompressible smoothed particle hydrodynamics simulation of multifluid flows", Int. J. Numer. Meth. Fluid., 69(11), 1715-1735. https://doi.org/10.1002/fld.2660. 

  42. Shobeyri, G. (2017), "Improving efficiency of SPH method for simulation of free surface flows using a new treatment of Neumann boundary conditions", J. Brazil. Soc. Mech. Sci. Eng., 39(12), 5001-5014. https://doi.org/10.1007/s40430-017-0861-2. 

  43. Shobeyri, G. (2018), "A simplified SPH method for simulation of free surface flows", Iran. J. Sci. Technol. Tran. Civil Eng., 42(3), 245-258. https://doi.org/10.1007/s40996-018-0103-6. 

  44. Sigalotti, L.D.G., Rendon, O., Klapp, J., Vargas, C.A. and Cruz, F. (2019), "A new insight into the consistency of the SPH interpolation formula", Appl. Math. Comput., 356, 50-73. https://doi.org/10.1016/j.amc.2019.03.018. 

  45. Staroszczyk, R. (2010), "Simulation of dam-break flow by a corrected smoothed particle hydrodynamics method", Arch. Hydro-Eng. Environ. Mech., 57(1), 61-79. 

  46. Takahashi, T., Dobashi, Y., Nishita, T. and Lin, M.C. (2018), "An efficient hybrid incompressible SPH solver with interface handling for boundary conditions", Comput. Graph. Forum, 37(1), 313-324. https://doi.org/10.1111/cgf.13292. 

  47. Takeda, H., Miyama, S.M. and Sekiya, M. (1994), "Numerical simulation of viscous flow by smoothed particle hydrodynamics", Prog. Theo. Phys., 92(5), 939-960. https://doi.org/10.1143/ptp/92.5.939. 

  48. Tang, Y., Chen, S. and Jiang, Q. (2020), "A conservative SPH scheme using exact projection with semi-analytical boundary method for free-surface flows", Appl. Math. Model., 82, 607-635. https://doi.org/10.1016/j.apm.2020.01.073. 

  49. Vela, L.V., Reynolds-Barredo, J.M. and Sanchez, R. (2019), "A positioning algorithm for SPH ghost particles in smoothly curved geometries", J. Comput. Appl. Math., 353, 140-153. https://doi.org/10.1016/j.cam.2018.12.021. 

  50. Yang, X. and Kong, S.C. (2017), "Smoothed particle hydrodynamics method for evaporating multiphase flows", Phys. Rev. E, 96(3), 033309. https://doi.org/10.1103/PhysRevE.96.033309. 

  51. Yang, X. and Kong, S.C. (2019), "Adaptive resolution for multiphase smoothed particle hydrodynamics", Comput. Phys. Commun., 239, 112-125. https://doi.org/10.1016/j.cpc.2019.01.002. 

  52. Yang, X., Dai, L. and Kong, S.C. (2017), "Simulation of liquid drop impact on dry and wet surfaces using SPH method", Proc. Combus. Inst., 36(2), 2393-2399. https://doi.org/10.1016/j.proci.2016.07.031. 

  53. Yoon, K., Kim, D.N. and Lee, P.S. (2017), "Nonlinear torsional analysis of 3D composite beams using the extended St. Venant solution", Struct. Eng. Mech., 62(1), 33-42. https://doi.org/10.12989/sem.2017.62.1.033. 

  54. Yoon, K., Lee, Y. and Lee, P.S. (2012), "A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities", Struct. Eng. Mech., 43(4), 411-437. http://dx.doi.org/10.12989/sem.2012.43.4.411. 

  55. Zheng, X. and Duan, W.Y. (2010) "Numerical simulation of dam breaking using smoothed particle hydrodynamics and viscosity behavior", J. Marine Sci. Appl., 9(1), 34-41. https://doi.org/10.1007/s11804-010-8037-9. 

  56. Zheng, X., Lv, X., Ma, Q., Duan, W., Khayyer, A. and Shao, S. (2018), "An improved solid boundary treatment for wave-float interactions using ISPH method", Int. J. Naval Arch. Ocean Eng., 10(3), 329-347. https://doi.org/10.1016/j.ijnaoe.2017.08.001. 

  57. Zheng, X., Ma, Q. and Shao, S. (2018), "Study on SPH viscosity term formulations", Appl. Sci., 8(2), 249. https://doi.org/10.3390/app8020249. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로