최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국항만경제학회지 = Journal of Korea Port Economic Association, v.37 no.3, 2021년, pp.1 - 17
하준수 (인하대학교 물류전문대학원) , 임채환 (인하대학교 물류전문대학원) , 조광휘 (인하대학교 물류전문대학원) , 하헌구 (인하대학교 물류전문대학원)
Forecasting the daily volume of container is important in many aspects of port operation. In this article, we utilized a machine-learning algorithm based on decision tree to predict future container throughput of Busan port. Accurate volume forecasting improves operational efficiency and service lev...
김종길.박지영.왕영.박성일.여기태(2011), Study on forecasting container volume of port using SD and ARIMA(2011), 한국항해항만학회지 제35집 제4호, 343-349.
Chan, H. K., Xu, S., and Qi, X. (2019), A comparison of time series methods for forecasting container throughput, International Journal of Logistics Research and Applications, 22(3), 294-303.
Chen, S., Goo, Y. J. J., & Shen, Z. D. (2014). A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements. The Scientific World Journal, 2014.
Chen, S. H., & Chen, J. N. (2010). Forecasting container throughputs at ports using genetic programming. Expert Systems with Applications, 37(3), 2054-2058.
Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184(3), 1140-1154.
Diaz, R., Talley, W., and Tulpule, M.(2011), Forecasting empty container volumes, The Asian Journal of Shipping and Logistics, 27(2), 217-236.
Farhan, J., and Ong, G. P.(2018), Forecasting seasonal container throughput at international ports using SARIMA models, Maritime Economics & Logistics, 20(1), 131-148.
Liu, C., Hu, Z., Li, Y., & Liu, S. (2017). Forecasting copper prices by decision tree learning. Resources Policy, 52, 427-434.
Patcha, A., & Park, J. M(2007), An overview of anomaly detection techniques: Existing solutions and latest technological trends, Computer networks, 51(12), 3448-3470.
Patcha, A., & Park, J. M(2007), An overview of anomaly detection techniques: Existing solutions and latest technological trends, Computer networks, 51(12), 3448-3470.
Rashed, Y., Meersman, H., Van de Voorde, E., and Vanelslander, T.(2017), Short-term forecast of container throughout: an ARIMA-intervention model for the port of Antwerp, Maritime Economics & Logistics, 19(4), 749-764.
Rahmawati, D., & Sarno, R.(2019), Anomaly detection using control flow pattern and fuzzy regression in port container handling, Journal of King Saud University-Computer and Information Sciences.
Schulze, P. M., and Prinz, A.(2009), Forecasting container transshipment in Germany, Applied Economics, 41(22), 2809-2815.
Viglioni, G., Cury, M. V. Q., & da Silva, P. A. L. (2007). Methodology for railway demand forecasting using data mining. In SAS global forum (Vol. 161, No. 2007, pp. 1-8).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.