$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

스테인레스 강의 수전해 전극 응용기술 동향
Technology Trends in Stainless Steel for Water Splitting Application 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.24 no.2, 2021년, pp.13 - 27  

김문수 (인하대학교 화학.화학공학 융합학과) ,  하재윤 (인하대학교 화학.화학공학 융합학과) ,  김용태 (인하대학교 화학.화학공학 융합학과) ,  최진섭 (인하대학교 화학.화학공학 융합학과)

초록
AI-Helper 아이콘AI-Helper

스테인레스 강은 지구상에서 가장 널리 사용되고 있는 철의 합금으로 니켈과 크롬을 포함하여 높은 내부식성을 가지고 있어 구조용 강재로 사용하기 매우 적합하다. 또한, 최근에는 스테인레스 강에 포함된 철과 니켈의 고유 특성을 이용하여 다양한 고기능성 촉매나 지지체, 또는 전극의 집전체 등으로의 응용 연구가 다양하게 이루어지고 있다. 특히, 높은 촉매 특성으로 인해 수전해 전극으로의 응용을 위한 스테인레스 강의 표면에서의 활성화 표면 처리 연구가 많이 이루어지고 있다. 이에 본 총설은 수전해 전극 응용을 위한 스테인레스 강의 수전해 전극 응용 표면처리 기술 자료를 정리 및 요약하였으며, 스테인레스 강의 표면처리 방법에 대한 특징 및 이를 통해 스테인레스 강이 저비용 고효율의 수전해 전극 활용을 위한 촉매 물질로써 응용될 수 있는 여러 방법을 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

Stainless steel, which includes Ni and Cr with Fe balance, is most often applied for a wide range of applications such as structure and equipment material. It is not only suitable for use in these applications due to its good corrosion resistance, but also can be applied to catalyst, supporting mate...

주제어

표/그림 (14)

참고문헌 (53)

  1. X. Zou, and Y. Zhang, 'Noble metal-free hydrogen evolution catalysts for water splitting' Chemical Society Review, 44, 5148-5180 (2015). 

  2. N. Armaroli, and V. Balzani, 'The Future of Energy Supply: Challenges and Opportunities' Angewante Chemie International Edition, 46, 52-66 (2007). 

  3. 권용근, 조은애, '수전해 기술 동향 및 전망', 재료마당, 대한금속재료학회, 28, 4-12 (2015) 

  4. H. Schafer, and M. Chatenet, 'Steel: The Resurrection of a Forgotten Water-Splitting Catalyst' ACS Energy Letter, 3, 574-591 (2018). 

  5. D. Chen, R. Lu, Z. Pu, J. Zhu, H. -W. Li, F. Liu, S. Hu, X. Luo, J. Wu, Y. Zhao, and S. Mu, 'Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting' Applied Catalysis B - Environmental, 279, 119396 (2020). 

  6. S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu, 'Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review' ACS Catalysts, 6, 4660-4672 (2016). 

  7. K. Honda, and A. Fujishima, 'Electrochemical Photolysis of Water at a Semiconductor Electrode' Nature, 238, 37-38 (1972). 

  8. W. Han, K. Kuepper, P. Hou, W. Akram, H. Eickmeier, J. Hardege, M. Steinhart, and H. Schafer, 'Free-Sustaining Three-Dimensional S235 Steel-Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution' Chem. Sus. Chem., 11, 3661-3671 (2018). 

  9. T. Shinagawa, A. T. Garcia-Esparza, and K. Takanabe, 'Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion' Scientific Report, 5, 13801 (2015). 

  10. X. Rong, J. Parolin, and A. M. Kolpak, 'A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution' ACS Catalysts, 6, 1153-1158 (2016). 

  11. Y. -F. Li, and A. Selloni, 'Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and FeDoped NiO x ' ACS Catalysts, 4, 1148-1153 (2014). 

  12. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, 'Ag 2 O/TiO 2 Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity' ACS Applied Materials and Interfaces, 2, 2385-2392 (2010). 

  13. L. Jiang, G. Zhou, J. Mi, and Z. Wu, 'Fabrication of visible-light-driven one-dimensional anatase TiO 2 /Ag heterojunction plasmonic photocatalyst' Catalysis Communication, 24, 48-51 (2012). 

  14. J. Creus, J. De Tovar, N. Romero, J. Gracia-Anton, K. Philippot, R. Bofill, and X. Sala, 'Ruthenium Nanoparticles for Catalytic Water Splitting' Chem. Sus. Chem., 12, 2493-2514 (2019). 

  15. A. Singh, S. L. Y. Chang, R. K. Hocking, U. Bach, and L. Spiccia, 'Highly active nickel oxide water oxidation catalysts deposited from molecular complexes' Energy and Environmental Science, 2, 579-586 (2013). 

  16. R. D. Smith, M. S. Prevot, R. D. Fagan, S. Trudel, and C. P. Berlinquette, 'Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel' Journal of American Chemical Society, 135, 11580-11586 (2013). 

  17. J. J. Fillol, Z. Codola, I. Garcia-Bosch, L. Gomez, J. J. Pla, and M. Costas, 'Efficient water oxidation catalysts based on readily available iron coordination complexes' Nature Chemistry, 3, 807-813 (2011). 

  18. Q. -Q. Chen, C. -C. Hou, C. -J. Wang, X. Yang, R. Shi, and Y. Chen, 'Ir 4+ -Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting' Chemical Communication, 54, 6400-6403 (2018). 

  19. X. Gao, D. Chen, J. Qi, F. Li, Y. Song, W. Zhang, and R. Cao, 'NiFe Oxalate Nanomesh Array with Homogenous Doping of Fe for Electrocatalytic Water Oxidation' Small, 15, 1904579 (2019). 

  20. G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, and X. Feng, 'Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites' Advanced Materials, 30, 1706279 (2018). 

  21. Y. Li, S. Guo, T. Jin, Y. Wang, F. Cheng, and L. Jiao, 'Promoted synergy in core-branch CoP@NiFe-OH nanohybrids for efficient electrochemical-/ photovoltage-driven overall water splitting' Nano Energy, 63, 103821 (2019). 

  22. M. Qu, Y. Jiang, M. Yang, S. Liu, Q. Guo, W. Shen, M. Li, and R. He, 'Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting' Applied Catalysis B - Environmental, 263, 118324 (2020). 

  23. J. Li, P. Xu, R. Zhou, R. Li, L. Qiu, S. P. Jiang, and D. Yuan, 'Co 9 S 8 -Ni 3 S 2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting' Electrochimica Acta, 299, 152-162 (2019). 

  24. M. Lee, M. S. Jee, S. Y. Lee, M. K. Cho, J. -P. Ahn, H. -S. Oh, W. Kim, Y. J. Hwang, and B. K. Min, 'Sloughing a Precursor Layer to Expose Active Stainless Steel Catalyst for Water Oxidation' ACS Applied Materials and Interfaces, 10, 24499-24507 (2018). 

  25. M. -S. Balogun, W. Qiu, Y. Huang, H. Y. Yang, R. Xu, W. Zhao, G. -R. Li, H. Ji, and Y. Tong, 'Cost-effective alkaline water electrolysis based on nitrogen- and phosphorus-doped self-supportive electrocatalysts' Advanced Materials, 29, 1702095 (2017). 

  26. B. C. M. Martindale, and E. Reisner, 'Bi-Functional irononly electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration' Advanced Energy Materials, 6, 1502095 (2016). 

  27. X. Liu, B. You, and Y. Sun, 'Facile Surface Modification of Ubiquitous Stainless Steel Led to Competent Electrocatalysts for Overall Water Splitting' ACS Sustainable Chemistry and Engineering, 5, 4778-4784 (2017). 

  28. J. Park, H. Yoo, and J. Choi, '3D ant-nest network of α-Fce 2 O 3 on stainless steel for all-in-one anode for Li-ion battery' Journal of Power Sources, 431, 25-30 (2019). 

  29. S. K. Tiwari, A. K. L. Singh, and R. N. Singh, 'Studies on the electrocatalytic properties of some austenitic stainless steels for oxygen evolution in an alkaline medium' Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 319, 263-274 (1991). 

  30. L. P. Bicelli, C. Romagnani, and M. T. Rosania, 'Hydrogen Evolution Reaction on Martensitic Stainless Steel' Journal de Chimie Physique et de Physico-Chimie Biologique, 73, 783-786 (1976). 

  31. L. P. Bicelli, C. Romagnani, and M. T. Rosania, 'Hydrogen Evolution reaction on Ferritic Stainless Steel Journal de Chimie Physique et de Physico-Chimie Biologique, 74, 529-532 (1977). 

  32. S. Anantharaj, S. Chatterjee, K. C. Swaathini, T. S. Amarnath, E. Subhashini, D. K. Pattanayak, and S. Kundu, 'Stainless Steel Scrubber: A Cost Efficient Catalytic Electrode for Full Water Splitting in Alkaline Medium' ACS Sustainable Chemistry and Engineering, 6, 2498-2509 (2018). 

  33. S. Anantharaj, H. Sugime, and S. Noda, 'Chemical Leaching of Inactive Cr and Subsequent Electrochemical Resurfacing of Catalytically Active Sites in Stainless Steel for High-Rate Alkaline Hydrogen Evolution Reaction' ACS Applied Energy Materials, 3, 12596-12606 (2020). 

  34. H. H. Farrag, A. A. Abbas, S. Y. Sayed, H. H. Alalawy, B. E. El-Anadouli, A. M. Mohammad, and N. K. Allam, 'From Rusting to Solar Power Plants: A Successful Nano-Pattering of Stainless Steel 316L for Visible Light-Induced Photoelectrocatalytic Water Splitting' ACS Sustainable Chemistry and Engineering, 6, 17352-17358 (2018). 

  35. J. S. Sagu, K. G. U. Wijayantha, M. Bohm, S. Bohm, and T. K. Rout, 'Anodized Steel Electrodes for Supercapacitors' ACS Applied Materials and Interfaces, 8, 6277-6285 (2016). 

  36. H. Schafer, S. Sadaf, L. Walder, K. Kuepper, S. Dinklage, J. Wollschlager, L. Schneider, M. Steinhart, J. Hardege, and D. Daum, 'Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics' Energy Environmental Science, 8, 2685- 2697 (2015). 

  37. M. Kim, Y.-T. Kim, and J. Choi, 'Controlled contribution of Ni and Cr cations to stainless steel 304 electrode: Effect of electrochemical oxidation on electrocatalytic properties' Electrochemistry Communications, 117, 106770 (2020). 

  38. M. Kim, J. Ha, N. Shin, Y. -T. Kim, and J. Choi, 'Self-activated anodic nanoporous stainless steel electrocatalysts with high durability for the hydrogen evolution reaction' Electrochimica Acta, 364, 137315 (2020). 

  39. B. Sarma, A. L. Jurovitzki, R. S. Ray, Y. R. Smith, S. K. Mohanty, and M. Misra, 'Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres' Nanotechnology, 26, 265401 (2015). 

  40. K. Xie, M. Guo, H. Huang, and Y. Liu, 'Fabrication of iron oxide nanotube arrays by electrochemical anodization' Corrosion Science, 88, 66-75 (2014). 

  41. K. Lee, 'Principle of Anodic TiO 2 Nanotube Formations' Applied Chemistry for Engineering, 28, 601-606 (2017). 

  42. K. Lee, A. Mazare, and P. Schmuki, 'One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes' Chemical Review, 114, 9385-9454 (2014). 

  43. M. Kim, J. Lee, M. Je, B. Heo, H. Yoo, H. Choi, J. Choi, and K. Lee, 'Electric field-driven one-step formation of vertical p-n junction TiO 2 nanotubes exhibiting strong photocatalytic hydrogen production' Journal of Materials Chemistry A, 9, 2239-2247 (2021). 

  44. M. Kim, J. Lee, K. Lee, Y. -T. Kim, and J. Choi, 'Preparation of Anodic Iron Oxide Composite Incorporated with WO 3 on the Stainless Steel Type-304 Substrate Through a Single-step Anodization' Journal of Korean Industrial Surface Engineering, 53, 257-264 (2020). 

  45. J. Choi, J. K. Lee, J. H. Lim, and S. J. Kim, 'Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications' Journal of Korean Industrial and Engineering Chemistry, 19, 249-258 (2008). 

  46. K. Kure, Y. Konno, E. Tsuji, P. Skeldon, G. E. Thompson, and H. Habazaki, 'Formation of self-organized nanoporous anodic films on Type 304 stainless steel' Electrochemistry Communications, 21, 1-4 (2012). 

  47. H. Habazaki, K. Shahzad, T. Hiraga, E. Tsuji, Y. Aoki, 'Formation of Self-Organized Porous Anodic Films on Iron and Stainless Steels' ECS Transactions, 69, 211-223 (2015). 

  48. Y. Wang, G. Li, K. Wang, and X. Chen, 'Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel' Applied Surface Science, 505, 144497 (2020). 

  49. H. Asoh, M. Nakatani, and S. Ono, 'Fabrication of thick nanoporous oxide films on stainless steel via DC anodization and subsequent biofunctionalization' Surface and Coatings Technology, 307, 441-451 (2016). 

  50. V. Klimas, V. Pakstas, I. Vrublevsky, K. Chernyakova, and A. Jagminas, 'Fabrication and Characterization of Anodic Films onto the Type-304 Stainless Steel in Glycerol Electrolyte' Journal of Physical Chemistry C, 117, 20730-20737 (2013). 

  51. J. Lee, H. -K. Choi, M. G. Kim, Y. S. Lee, and K. Lee, 'Formation of porous oxide layer on stainless steel by anodization in hot glycerol electrolyte' Applied Chemistry for Engineering, 31, 215-219 (2020). 

  52. H. Yoo, Y. -W. Choi, and J. Choi, 'TiO 2 nanotubes with a doping of ruthenium oxide by single-step anodization for water oxidation applications' ChemCatChem, 7, 643-647 (2015). 

  53. H. Yoo, K. Oh, Y. R. Lee, K. H. Row, G. Lee, and J. Choi, 'Simultaneous co-doping of RuO 2 and IrO 2 into anodic TiO 2 nanotubes: A binary catalyst for electrochemical water splitting' International Journal of Hydrogen Energy, 42, 6657-6664 (2017). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로