최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기지구물리와 물리탐사 = Geophysics and geophysical exploration, v.24 no.2, 2021년, pp.35 - 44
박상진 (강원대학교 지구물리학과) , 안수정 (강원대학교 지구물리학과) , 소병달 (강원대학교 지구물리학과)
As the execution speed of Python is slower than those of other programming languages (e.g., C, C++, and FORTRAN), Python is not considered to be efficient for writing numerical geodynamic code that requires numerous iterations. Recently, many computational techniques, such as the Just-In-Time (JIT) ...
Aagaard, B. T., Knepley, M. G., & Williams, C. A., 2013, A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, J. Geophys. Res.-Solid Earth, 118(6), 3059-3079, doi: 10.1002/jgrb.5021.
Akeret, J., Gamper, L., Amara, A., and Refregier, A., 2015, HOPE: A Python just-in-time compiler for astrophysical computations, Astron. Comput., 10, 1-8, doi: 10.1016/j.ascom.2014.12.001.
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith, K., 2011, Cython: The best of both worlds, Comput. Sci. Eng., 13(2), 31-39, doi: 10.1109/MCSE.2010.118.
Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., and Marquart, G., 1989, A benchmark comparison for mantle convection codes, Geophys. J. Int., 98(1), 23-38, doi: 10.1111/j.1365-246X.1989.tb05511.x.
Chaves, J. C., Nehrbass, J., Guilfoos, B., Gardiner, J., Ahalt, S., Krishnamurthy, A., Unpingco, J., Chalker, A., Warnock, A., and Samsi, S., 2006, Octave and Python: High-level scripting languages productivity and performance evaluation, HPCMP Users Group Conference, 429-434, doi: 10.1109/HPCMPUGC.2006.55.
Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., and Wilczynski, B., 2009, Biopython: freely available Python tools for computational molecular biology and bioinformatics, Bioinformatics, 25(11), 1422-1423, doi: 10.1093/bioinformatics/btp163.
Dabrowski, M., Krotkiewski, M., and Schmid, D. W., 2008, MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9(4), Q04030, doi: 10.1029/2007GC001719.
Dalcin, L. D., Paz, R. R., Kler, P. A., and Cosimo, A., 2011, Parallel distributed computing using Python, Adv. Water Resour., 34(9), 1124-1139, doi: 10.1016/j.advwatres. 2011.04.013.
Furuichi, M., and May, D. A., 2015, Implicit solution of the material transport in stokes flow simulation: Toward thermal convection simulation surrounded by free surface, Comput. Phys. Commun., 192, 1-11, doi: 10.1016/j.cpc.2015. 02.011.
Garel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., and Wilson, C. R., 2014, Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate, Geochem. Geophys. Geosyst., 15(5), 1739-1765, doi: 10.1002/2014GC005257.
Gassmoller, R., Lokavarapu, H., Heien, E., Puckett, E. G., and Bangerth, W., 2018, Flexible and Scalable Particle-in-Cell Methods With Adaptive Mesh Refinement for Geodynamic Computations, Geochem. Geophys. Geosyst., 19(9), 3596-3604, doi: 10.1029/2018GC007508.
Gerya, T., 2015, Tectonic overpressure and underpressure in lithospheric tectonics and metamorphism, J. Metamorph. Geol., 33(8), 785-800, doi: 10.1111/jmg.12144.
Glerum, A., Thieulot, C., Fraters, M., Blom, C., & Spakman, W., 2018, Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction, Solid Earth, 9(2), 267-294, doi: 10.1111/jmg.12144.
Gurnis, M., and Davies, G. F., 1986, Mixing in numerical models of mantle convection incorporating plate kinematics, J. Geophys. Res.-Solid Earth, 91(B6), 6375-6395, doi: 10.1029/JB091iB06p06375.
Hunter, J. D., 2007, Matplotlib: A 2D graphics environment, IEEE Ann. Hist. Comput., 9(03), 90-95, doi: 10.1109/MCSE.2007.55.
King, S. D., 2009, On topography and geoid from 2-D stagnant lid convection calculations, Geochem. Geophys. Geosyst., 10(3), Q03002, doi: 10.1029/2008GC002250.
Leng, W., and Zhong, S., 2011, Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies, Geochem. Geophys. Geosyst., 12(4), Q04006, doi: 10.1029/2010GC003425.
Mansour et al., 2020, Underworld2: Python Geodynamics Modelling for Desktop, HPC and Cloud, Journal of Open Source Software, 5(47), 1797, doi: 10.21105/joss.01797.
O'Boyle, N. M., Morley, C., and Hutchison, G. R., 2008, Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit, Chem. Cent. J., 2(1), 1-7, doi: 10.1186/1752-153X-2-5.
Oliphant, T. E., 2007, Python for scientific computing, Comput. Sci. Eng., 9(3), 10-20, doi: 10.1109/MCSE.2007.58.
Omelchenko, Y. A., and Karimabadi, H., 2006, Self-adaptive time integration of flux-conservative equations with sources, J. Comput. Phys., 216(1), 179-194, doi: 10.1016/j.jcp.2005.12.008.
O'Neill, C., Moresi, L., Muller, D., Albert, R., and Dufour, F., 2006, Ellipsis 3D: A particle-in-cell finite-element hybrid code for modelling mantle convection and lithospheric deformation, Comput. Geosci., 32(10), 1769-1779.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R. and Dubourg, V., 2011, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825-2830.
Samuel, H., and Evonuk, M., 2010, Modeling advection in geophysical flows with particle level sets, Geochem. Geophys. Geosyst., 11(8), Q08020, doi: 10.1029/2010GC003081.
Samuel, H., 2018, A deformable particle-in-cell method for advective transport in geodynamic modelling, Geophys. J. Int., 214(3), 1744-1773, doi: 10.1093/gji/ggy231.
Schenk, O., Gartner, K., Fichtner, W., and Stricker, A., 2001, PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation, Futur. Gener. Comp. Syst., 18(1), 69-78, doi: 10.1016/S0167-739X(00)00076-5.
Srinath, K. R., 2017, Python-the fastest growing programming language, International Research Journal of Engineering and Technology, 4(12), 354-357.
Sun, Q., Berkelbach, T. C., Blunt, N. S., Booth, G. H., Guo, S., Li, Z., Liu, J., McClain, J. D., Sayfutyarova, E. R., Sharma, S., Wouters, S., and Chan, G. K., 2018, PySCF: the Python-based simulations of chemistry framework, Wiley Interdiscip. Rev.-Comput. Mol. Sci., 8, e1340, doi: 10.1002/wcms.1340.
Tackley, P. J., and King, S. D., 2003, Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations, Geochem. Geophys. Geosyst., 4(4), 8302, doi: 10.1029/2001GC000214.
Thieulot, C., 2011, FANTOM: Two-and three-dimensional numerical modelling of creeping flows for the solution of geological problems, Phys. Earth Planet. Inter., 188(1-2), 47-68, doi: 10.1016/j.pepi.2011.06.011.
Thieulot, C., 2014, ELEFANT: a user-friendly multipurpose geodynamics code. Solid Earth Discussions, 6(2), 1949-2096, doi: 10.5194/sed-6-1949-2014.
Van Der Walt, S., Colbert, S. C., and Varoquaux, G., 2011, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 13(2), 22-30, doi: 10.1109/MCSE.2011.37.
Van Keken, P. E., King, S. D., Schmeling, H., Christensen, U. R., Neumeister, D., and Doin, M. P., 1997, A comparison of methods for the modeling of thermochemical convection, J. Geophys. Res.-Solid Earth, 102(B10), 22477-22495, doi: 10.1029/97JB01353.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., and Bright, J., 2020, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261-272.
Wang, H., Agrusta, R., and van Hunen, J., 2015, Advantages of a conservative velocity interpolation (CVI) scheme for particle-in-cell methods with application in geodynamic modeling, Geochem. Geophys. Geosyst., 16, 2015-2023, doi: 10.1002/2015GC005824.
Wilbers, I. M., Langtangen, H. P., and Odegard, A., 2009, Using cython to speed up numerical python programs, Fifth National Conference on Computational Mechanics, 9, 495-512.
Yuen, D. A., and Peltier, W. R., 1982, Normal modes of the viscoelastic earth, Geophys. J. Int., 69(2), 495-526, doi: 10.1111/j.1365-246X.1982.tb04962.x.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.