$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] A new image-quality evaluating and enhancing methodology for bridge inspection using an unmanned aerial vehicle

Smart structures and systems, v.27 no.2, 2021년, pp.209 - 226  

Lee, Jin Hwan (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ,  Yoon, Sungsik (Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign) ,  Kim, Byunghyun (Department of Civil Engineering, University of Seoul) ,  Gwon, Gi-Hun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ,  Kim, In-Ho (Department of Civil Engineering, Kunsan National University) ,  Jung, Hyung-Jo (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

This paper proposes a new methodology to address the image quality problem encountered as the use of an unmanned aerial vehicle (UAV) in the field of bridge inspection increased. When inspecting a bridge, the image obtained from the UAV was degraded by various interference factors such as vibration,...

Keyword

참고문헌 (37)

  1. Burdziakowski, P. (2020), "A novel method for the deblurring of photogrammetric images using conditional generative adversarial networks", Remote Sensing, 12(16), 2586. https://doi.org/10.3390/rs12162586 

  2. Cho, S. and Lee, S. (2009), "Fast motion deblurring", ACM SIGGRAPH Asia 2009 papers, pp. 1-8. https://doi.org/10.1145/1661412.1618491 

  3. Cunningham, C.S., Ransom, D., Wilkes, J., Bishop, J. and White, B. (2015), "Mechanical Design Features of a Small Gas Turbine for Power Generation in Unmanned Aerial Vehicles", Proceedings of Turbo Expo: Power for Land, Sea, and Air, 56796, V008T23A021. 

  4. Dong, C., Loy, C.C. and Tang, X. (2016), "Accelerating the superresolution convolutional neural network", Proceedings of European Conference on Computer Vision, pp. 391-407. 

  5. Dorafshan, S., Maguire, M., Hoffer, N.V. and Coopmans, C. (2017), "Challenges in bridge inspection using small unmanned aerial systems: Results and lessons learned", Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1722-1730. 

  6. Duque, L., Seo, J. and Wacker, J. (2018), "Bridge deterioration quantification protocol using UAV", J. Bridge Eng., 23(10), 04018080. https://doi.org/(ASCE)BE.1943-5592.0001289 

  7. Gao, J., Liao, W., Nuyttens, D., Lootens, P., Vangeyte, J., Pizurica, A. and Pieters, J.G. (2018), "Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery", Int. J. Appl. Earth Observ. Geoinform., 67, 43-53. https://doi.org/10.1016/j.jag.2017.12.012 

  8. Golestaneh, S.A. and Karam, L.J. (2017), "Spatially-varying blur detection based on multiscale fused and sorted transform coefficients of gradient magnitudes", CVPR 2017, pp. 596-605. 

  9. Hallermann, N. and Morgenthal, G. (2014), "Visual inspection strategies for large bridges using Unmanned Aerial Vehicles (UAV)", Proceedings of the 7th IABMAS, International Conference on Bridge Maintenance, Safety and Management, pp. 661-667. 

  10. He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017), "Mask RCNN", Proceedings of the IEEE International Conference on Computer Vision, pp. 2961-2969. 

  11. Jeong, G.Y., Nguyen, T.N., Tran, D.K. and Hoang, T.B.H. (2020), "Applying unmanned aerial vehicle photogrammetry for measuring dimension of structural elements in traditional timber building", Measurement, 153, 107386. https://doi.org/10.1016/j.measurement.2019.107386 

  12. Jordan, S., Moore, J., Hovet, S., Box, J., Perry, J., Kirsche, K. and Tse, Z.T.H. (2018), "State-of-the-art technologies for UAV inspections", IET Radar, Sonar & Navigation, 12(2), 151-164. https://doi.org/10.1049/iet-rsn.2017.0251 

  13. Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge inspection and condition assessment using unmanned aerial vehicles (UAVs): major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669 

  14. Kim, B. and Cho, S. (2019), "Image-based concrete crack assessment using mask and region-based convolutional neural network", Struct. Control Health Monitor., 26(8), e2381. https://doi.org/10.1002/stc.2381 

  15. Kim, J., Oh, J. and Park, R.H. (2016), "Removing non-uniform camera shake using blind motion deblurring", Proceedings of the 2016 IEEE International Conference on Consumer Electronics (ICCE), pp. 351-352. 

  16. Kim, I.H., Jeon, H., Baek, S.C., Hong, W.H. and Jung, H.J. (2018), "Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle", Sensors, 18(6), 1881. https://doi.org/10.3390/s18061881 

  17. Lei, J., Zhang, S., Luo, L., Xiao, J. and Wang, H. (2018), "Superresolution enhancement of UAV images based on fractional calculus and POCS", Geo-spatial Inform. Sci., 21(1), 56-66. https://doi.org/10.1080/10095020.2018.1424409 

  18. Liu, L., Liu, B., Huang, H. and Bovik, A.C. (2014a), "Noreference image quality assessment based on spatial and spectral entropies", Signal Process.: Image Commun., 29(8), 856-863. https://doi.org/10.1016/j.image.2014.06.006 

  19. Liu, Q.F., Xiao, S.F., Huang, K.Z. and Zhong, Z. (2014b), "A SVD-based optical MIMO precoding scheme in indoor visible light communication", Int. J. Future Comput. Commun., 3(6), 421. https://doi.org/10.7763/IJFCC.2014.V3.340 

  20. Liu, H., Wang, W., He, Z., Tong, Q., Wang, X., Yu, W. and Lv, M. (2015), "Blind image quality evaluation metrics design for UAV photographic application", Proceedings of IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 293-297. 

  21. Liu, Y., Yeoh, J.K. and Chua, D.K. (2020), "Deep learning-based enhancement of motion blurred UAV concrete crack images", J. Comput. Civil Eng., 34(5), 04020028. https://doi.org/(ASCE)CP.1943-5487.0000907 

  22. Mittal, A., Moorthy, A.K. and Bovik, A.C. (2012a), "No-reference image quality assessment in the spatial domain", IEEE Transactions on Image Processing, 21(12), 4695-4708. https://doi.org/ 10.1109/TIP.2012.2214050 

  23. Mittal, A., Soundararajan, R. and Bovik, A.C. (2012b), "Making a "completely blind" image quality analyzer", IEEE Signal Processing Letters, 20(3), 209-212. https://doi.org/ 10.1109/LSP.2012.2227726 

  24. Morgenthal, G. and Hallermann, N. (2014), "Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures", Adv. Struct. Eng., 17(3), 289-302. https://doi.org/10.1260/1369-4332.17.3.289 

  25. Morgenthal, G., Hallermann, N., Kersten, J., Taraben, J., Debus, P., Helmrich, M. and Rodehorst, V. (2019), "Framework for automated UAS-based structural condition assessment of bridges", Automat. Constr., 97, 77-95. https://doi.org/10.1016/j.autcon.2018.10.006 

  26. Myeong, W. and Myung, H. (2018), "Development of a wallclimbing drone capable of vertical soft landing using a tilt-rotor mechanism", IEEE Access, 7, 4868-4879. https://doi.org/10.1109/ACCESS.2018.2889686 

  27. O'Connor, J., Smith, M.J. and James, M.R. (2017), "Cameras and settings for aerial surveys in the geosciences: Optimising image data", Progress Phys. Geography, 41(3), 325-344. https://doi.org/10.1177/0309133317703092 

  28. Salaan, C.J.O., Okada, Y., Mizutani, S., Ishii, T., Koura, K., Ohno, K. and Tadokoro, S. (2018), "Close visual bridge inspection using a UAV with a passive rotating spherical shell", J. Field Robot., 35(6), 850-867. https://doi.org/10.1002/rob.21781 

  29. Seo, J., Duque, L. and Wacker, J. (2018), "Drone-enabled bridge inspection methodology and application", Automat. Constr., 94, 112-126. https://doi.org/10.1016/j.autcon.2018. 06.006 

  30. Sieberth, T., Wackrow, R. and Chandler, J.H. (2015), "UAV image blur - its influence and ways to correct it", The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), 33. https://doi.org/10.5194/isprsarchives-XL-1-W4-33-2015 

  31. Sieberth, T., Wackrow, R. and Chandler, J.H. (2016), "Automatic detection of blurred images in UAV image sets", ISPRS J. Photogrammetry Remote Sens., 122, 1-16. https://doi.org/10.1016/j.isprsjprs.2016.09.010 

  32. Su, B., Lu, S. and Tan, C.L. (2011), "Blurred image region detection and classification", Proceedings of the 19th ACM International Conference on Multimedia, pp. 1397-1400. 

  33. Tomiczek, A.P., Bridge, J.A., Ifju, P.G., Whitley, T.J., Tripp, C.S., Ortega, A.E. and Gonzalez, S.A. (2018), "Small unmanned aerial vehicle (sUAV) inspections in GPS denied area beneath bridges", Proceedings of the Structures Congress 2018: Bridges, Transportation Structures, and Nonbuilding Structures, pp. 205-216. 

  34. Wang, R., Ma, G., Qin, Q., Shi, Q. and Huang, J. (2018), "Blind UAV images deblurring based on discriminative networks", Sensors, 18(9), 2874. https://doi.org/10.3390/s18092874 

  35. Xie, S., Girshick, R., Dollar, P., Tu, Z. and He, K. (2017), "Aggregated residual transformations for deep neural networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492-1500. 

  36. Yoon, S., Gwon, G.H., Lee, J.H. and Jung, H.J. (2020), "Three-dimensional image coordinate-based missing region of interest area detection and damage localization for bridge visual inspection using unmanned aerial vehicles", Struct. Health Monitor., 1475921720918675. https://doi.org/10.1177/1475921720918675 

  37. Zhou, X., Mateos, J., Zhou, F., Molina, R. and Katsaggelos, A.K. (2015), "Variational Dirichlet blur kernel estimation", IEEE Transact. Image Process., 24(12), 5127-5139. https://doi.org/10.1109/TIP.2015.2478407 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로