$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission 원문보기

Journal of astronomy and space sciences, v.38 no.2, 2021년, pp.105 - 117  

Kim, Pureum (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ,  Park, Sang-Young (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ,  Cho, Sungki (Korea Astronomy and Space Science Institute) ,  Jo, Jung Hyun (Korea Astronomy and Space Science Institute)

Abstract AI-Helper 아이콘AI-Helper

In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to...

주제어

표/그림 (12)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • In this study, preliminary trajectory design and analyses for a future mission to visit and inspect asteroid (99942) Apophis around its 2029 close approach to Earth were performed under the assumption of using impulsive maneuvers. Several different types of trajectories that may or may not include gravity assists were analyzed, and relatively simple trajectories, such as multi-revolution ballistic trajectories, 1DSM trajectories, and MGA-1DSM trajectories with a single gravity assist from Earth or Venus, were found to be the most feasible.

대상 데이터

  • As the pre- 2029 nominal heliocentric orbit of Apophis lies between the orbits of Venus and Mars, Venus, Earth, and Mars were chosen as candidate swing-by planets, and the number of gravity assists was limited to two; thus, the number of possible MGA-1DSM sequences is 12. In total, 14 sequences (three with a single gravity assist, nine with two assists, and two without any assists) were chosen as candidates for this feasibility analysis. From now on, MGA-1DSM sequences are denoted by abbreviations of the visiting order; for instance, the EVMA sequence indicates that it is an MGA- 1DSM sequence with two gravity assists that begins from Earth and performs two swing-by’s at Venus and then Mars, and then reaches Apophis in the end.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Acton C, Bachman N, Semenov B, Wright E, A look towards the future in the handling of space science mission geometry, Planet. Space Sci. 150, 9-12 (2018). https://doi.org/10.1016/j.pss.2017.02.013 

  2. Addis B, Cassioli A, Locatelli M, Schoen F, A global optimization method for the design of space trajectories, Comput. Optim. Appl. 48, 635-652 (2011). https://doi.org/10.1007/s10589-009-9261-6 

  3. Andrews DG, Bonner KD, Butterworth AW, Calvert HR, Dagang BRH, et al., Defining a successful commercial asteroid mining program, Acta Astronaut. 108, 106-118 (2015). https://doi.org/10.1016/j.actaastro.2014.10.034 

  4. Brozovic M, Benner LAM, McMichael JG, Giorgini JD, Pravec P, et al., Goldstone and Arecibo radar observations of (99942) Apophis in 2012-2013, Icarus. 300, 115-128 (2018). https://doi.org/10.1016/j.icarus.2017.08.032 

  5. Dachwald B, Wie B, Solar sail kinetic energy impactor trajectory optimization for an asteroid-deflection mission, J. Spacecr. Rockets. 44, 755-764 (2007). https://doi.org/10.2514/1.22586 

  6. DeMartini JV, Richardson DC, Barnouin OS, Schmerr NC, Plescia JB, et al., Using a discrete element method to investigate seismic response and spin change of 99942 Apophis during its 2029 tidal encounter with Earth, Icarus. 328, 93-103 (2019). https://doi.org/10.1016/j.icarus.2019.03.015 

  7. Englander JA, Conway BA, An automated solution of the low-thrust interplanetary trajectory problem, J. Guid. Control Dyn. 40, 15-27 (2017). https://doi.org/10.2514/1.G002124 

  8. Englander JA, Ellison DH, Williams K, McAdams J, Knittel JM, et al., Optimization of the Lucy interplanetary trajectory via two-point direct shooting, in 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, ME, 11-15 Aug 2019. 

  9. Folkner WM, Williams JG, Boggs DH, Park RS, Kuchynka P, The planetary and lunar ephemerides DE430 and DE431, IPN Progress Report, 42-196 (2014). 

  10. Glassmeier KH, Boehnhardt H, Koschny D, Kuhrt E, Richter I, The Rosetta mission: flying towards the origin of the solar system, Space Sci. Rev. 128, 1-21 (2007). https://doi.org/10.1007/s11214-006-9140-8 

  11. Gong S, Li J, Jiang F, Interplanetary trajectory design for a hybrid propulsion system, Aerosp. Sci. Technol. 45, 104-113 (2015). https://doi.org/10.1016/j.ast.2015.04.020 

  12. Gooding RH, A procedure for the solution of Lambert's orbital boundary-value problem, Celest. Mech. Dyn. Astron. 48, 145-165 (1990). https://doi.org/10.1007/BF00049511 

  13. Hartmann JW, Coverstone-Carroll VL, Williams SN, Optimal interplanetary spacecraft trajectories via a Pareto genetic algorithm, J. Astronaut. Sci. 46, 267-282 (1998). https://doi.org/10.1007/BF03546237 

  14. Izzo D, Revisiting Lambert's problem, Celest. Mech. Dyn. Astron. 121, 1-15 (2015). https://doi.org/10.1007/s10569-014-9587-y 

  15. Jin WT, Li F, Yan JG, Andert TP, Ye M, et al., A simulated global GM estimate of the asteroid 469219 Kamo'oalewa for China's future asteroid mission, Mon. Not. R. Astron. Soc. 493, 4012-4021 (2020). https://doi.org/10.1093/mnras/staa384 

  16. Kawaguchi J, Fujiwara A, Uesugi T, Hayabusa-its technology and science accomplishment summary and Hayabusa-2, Acta Astronaut. 62, 639-647 (2008). https://doi.org/10.1016/j.actaastro.2008.01.028 

  17. Kawakatsu Y, V ∞ direction diagram and its application to swingby design, in 21st International Symposium on Space Flight Dynamics, Toulouse, France, 28 Sep-02 Oct 2009. 

  18. Kim P, A modified basin hopping method for interplanetary trajectory design, Master Thesis, Yonsei University (2019). 

  19. Lauretta DS, Balram-Knutson SS, Beshore E, Boynton WV, Drouet d'Aubigny C, et al., OSIRIS-REx: sample return from asteroid (101955) Bennu, Space Sci. Rev. 212, 925-984 (2017). https://doi.org/10.1007/s11214-017-0405-1 

  20. Li S, Zhu Y, Wang Y, Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions, Adv. Space Res. 53, 696-707 (2014). https://doi.org/10.1016/j.asr.2013.12.012 

  21. Marti R, Lozano JA, Mendiburu A, Hernando L, Multi-start methods, in Handbook of Heuristics, eds. Marti R, Pardalos P, Resende M (Springer, Cham, 2018), 155-175. 

  22. McCarty SL, McGuire ML, Parallel monotonic basin hopping for low thrust trajectory optimization, in 28th AAS/AIAA Space Flight Mechanics Meeting, Kissimmee, FL, 8-12 Jan 2018. 

  23. NASA JPL Horizons, Asteroid & comet SPK file generation request (n.d.) [Internet], viewed 2020 Dec 29, available from: https://ssd.jpl.nasa.gov/x/spk.html 

  24. Oldenhuis R, Robust solver for Lambert's orbital-boundary value problem (2020) [Internet], viewed 2020 Dec 29, available from: https://www.mathworks.com/matlabcentral/fileexchange/26348-robust-solver-for-lambert-s-orbitalboundary-value-problem 

  25. Prockter L, Murchie S, Cheng A, Krimigis S, Farquhar R, et al., The NEAR Shoemaker mission to asteroid 433 Eros, Acta Astronaut. 51, 491-500 (2002). https://doi.org/10.1016/S0094-5765(02)00098-X 

  26. Rauwolf GA, Coverstone-Carroll VL, Near-optimal low-thrust orbit transfers generated by a genetic algorithm, J. Spacecr. Rockets. 33, 859-862 (1996). https://doi.org/10.2514/3.26850 

  27. Sarli BV, Horikawa M, Yam CH, Kawakatsu Y, Yamamoto T, DESTINY+ trajectory design to (3200) Phaethon, J. Astronaut. Sci. 65, 82-110 (2018). https://doi.org/10.1007/s40295-017-0117-5 

  28. Schutze O, Vasile M, Coello Coello CA, Computing the set of epsilon-efficient solutions in multiobjective space mission design, J. Aerosp. Comp. Inf. Commun. 8, 53-70 (2011). https://doi.org/10.2514/1.46478 

  29. Souchay J, Lhotka C, Heron G, Herve Y, Puente V, et al., Changes of spin axis and rate of the asteroid (99942) Apophis during the 2029 close encounter with Earth: a constrained model, Astron. Astrophys. 617, A74 (2018). https://doi.org/10.1051/0004-6361/201832914 

  30. Vasile M, De Pascale P, On the preliminary design of multiple gravity-assist trajectories, J. Spacecr. Rockets. 43, 794-805 (2006). https://doi.org/10.2514/1.17413 

  31. Vasile M, Minisci E, Locatelli M, Analysis of some global optimization algorithms for space trajectory design, J. Spacecr. Rockets. 47, 334-344 (2010). https://doi.org/10.2514/1.45742 

  32. Vavrina M, Englander J, Ellison DH, Global optimization of n-maneuver, high-thrust trajectories using direct multiple shooting, in 26th AAS/AIAA Spaceflight Mechanics Meeting, Napa, CA, 14-18 Feb 2016. 

  33. Wagner S, Wie B, Robotic and human exploration/deflection mission design for asteroid 99942 Apophis, Acta Astonaut. 90, 72-79 (2013). https://doi.org/10.1016/j.actaastro.2012.11.017 

  34. Wales DJ, Doye JPK, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A. 101, 5111-5116 (1997). https://doi.org/10.1021/jp970984n 

  35. Watanabe S, Tsuda Y, Yoshikawa M, Tanaka S, Saiki T, et al., Hayabusa2 mission overview, Space Sci. Rev. 208, 3-16 (2017). https://doi.org/10.1007/s11214-017-0377-1 

  36. Williams B, Antreasian P, Carranza E, Jackman C, Leonard J, et al., OSIRIS-REx flight dynamics and navigation design, Space Sci. Rev. 214, 69 (2018). https://doi.org/10.1007/s11214-018-0501-x 

  37. Yam CH, Davis DC, Longuski JM, Howell KC, Buffington B, Saturn impact trajectories for Cassini end-of-mission, J. Spacecr. Rockets. 46, 353-364 (2009). https://doi.org/10.2514/1.38760 

  38. Yu Y, Richardson DC, Michel P, Schwartz SR, Ballouz RL, Numerical predictions of surface effects during the 2029 close approach of asteroid 99942 Apophis, Icarus. 242, 82-96 (2014). https://doi.org/10.1016/j.icarus.2014.07.027 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로