$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Hysteretic moment-curvature relations for the analysis of RC flexural members subjected to blast loading

Computers & concrete, v.27 no.6, 2021년, pp.537 - 548  

Park, Gang-Kyu (Department of Civil and Environmental Engineering, Korean Advanced Institute for Science and Technology) ,  Kwak, Hyo-Gyoung (Department of Civil and Environmental Engineering, Korean Advanced Institute for Science and Technology) ,  Filippou, Filip C. (Department of Civil and Environmental Engineering, University of California)

Abstract AI-Helper 아이콘AI-Helper

A hysteretic moment-curvature relation for analyzing reinforced concrete (RC) members subjected to blast loading is introduced in this paper. After constructing a monotonic envelope curve for the moment-curvature relation, the hysteretic behaviors of unloading and reloading are defined based on the ...

Keyword

참고문헌 (49)

  1. ACI Committee 318 (2008), Building Code Requirements for Structural Concrete and Commentary, 28, 0-15. 

  2. Al-Zaid, R.Z., Al-Negheimish, A.I., Al-Saawani, M.A. and El-Sayed, A.K. (2012), "Analytical study on RC beams strengthened for flexure with externally bonded FRP reinforcement", Compos. Part B: Eng., 43(2), 129-141. https://doi.org/10.1016/j.compositesb.2011.11.015. 

  3. Astarlioglu, S. and Krauthammer, T. (2014), "Response of normal-strength and ultra-high-performance fiber-reinforced concrete columns to idealized blast loads", Eng. Struct., 61, 1-12. https://doi.org/10.1016/j.engstruct.2014.01.015. 

  4. Astarlioglu, S., Krauthammer, T., Morency, D. and Tran, T.P. (2013), "Behavior of reinforced concrete columns under combined effects of axial and blast-induced transverse loads", Eng. Struct., 55, 26-34. https://doi.org/10.1016/j.engstruct.2012.12.040. 

  5. Biggs, J.M. (1964), Introduction to Structural Dynamics, Vol. 3, McGraw-Hill, New York. 

  6. Burrell, R.P., Aoude, H. and Saatcioglu, M. (2014), "Response of SFRC columns under blast loads", J. Struct. Eng., 141(9), 1-15. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001186. 

  7. Cadoni, E., Solomos, G. and Albertini, C. (2009), "Mechanical characterisation of concrete in tension and compression at high strain rate using a modified Hopkinson bar", Mag. Concrete Res., 61(3), 221-230. https://doi.org/10.1680/macr.2006.00035. 

  8. Carta, G. and Stochino, F. (2013), "Theoretical models to predict the flexural failure of reinforced concrete beams under blast loads", Eng. Struct., 49, 306-315. https://doi.org/10.1016/j.engstruct.2012.11.008. 

  9. Chopra, A.K. (1995), Dynamics of Structures, Vol. 3, Prentice Hall, New Jersey. 

  10. Cusatis, G. (2011), "Strain-rate effects on concrete behavior", Int. J. Impact Eng., 38(4), 162-170. https://doi.org/10.1016/j.ijimpeng.2010.10.030. 

  11. Dragos, J. and Wu, C. (2014), "Interaction between direct shear and flexural responses for blast loaded one-way reinforced concrete slabs using a finite element model", Eng. Struct., 72, 193-202. https://doi.org/10.1016/j.engstruct.2014.04.043. 

  12. Fujikake, K., Li, B. and Soeun, S. (2009), "Impact response of reinforced concrete beam and its analytical evaluation", J. Struct. Eng., 135(8), 938-950. 

  13. Gang, H.G. and Kwak, H.G. (2017), "A strain rate dependent orthotropic concrete material model", Int. J. Impact Eng., 103, 211-224. https://doi.org/10.1016/j.ijimpeng.2017.01.027. 

  14. Gergely, P. and Lutz, L.A. (1968), "Maximum crack width in reinforced concrete flexural members", ACI Spec. Publ., 20, 87-117. 

  15. Haido, J.H., Bakar, B.H.A., Abdul-razzak, A.A. and Jayaprakash, J. (2010), "Dynamic response simulation for reinforced concrete slabs", Simul. Model. Pract. Theory, 18(6), 696-711. https://doi.org/10.1016/j.simpat.2010.01.011. 

  16. Hawkins, N.M. (1974), "The strength of stud shear connections", Civil Eng. Tran., 39-45. 

  17. Jacques, E. (2011), "Blast retrofit of reinforced concrete walls and slabs", Master Thesis, University of Ottawa, Canada. 

  18. Jacques, E., Lloyd, A., Imbeau, P., Palermo, D. and Quek, J. (2015), "GFRP-retrofitted reinforced concrete columns subjected to simulated blast loading", J. Struct. Eng., 141(11), 1-13. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001251. 

  19. Jones, J., Wu, C., Oehlers, D.J., Whittaker, A.S., Sun, W., Marks, S. and Coppola, R. (2009), "Finite difference analysis of simply supported RC slabs for blast loadings", Eng. Struct., 31(12), 2825-2832. https://doi.org/10.1016/j.engstruct.2009.07.011. 

  20. Krauthammer, T. and Astarlioglu, S. (2017), "Direct shear resistance models for simulating buried RC roof slabs under airblast-induced ground shock", Eng. Struct., 140, 308-316. https://doi.org/10.1016/j.engstruct.2017.02.056. 

  21. Krauthammer, T., Bazeos, N. and Holmquist, T.J. (1986), "Modified SDOF analysis of RC box-type structures", J. Struct. Eng., ASCE, 112(4), 726-744. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:4(726). 

  22. Krauthammer, T., Shanaa, H.M. and Assadi, A. (1990), "Response of reinforced concrete elements to severe impulsive loads", J. Struct. Eng., ASCE, 116(4), 1061-1079. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:4(1061). 

  23. Kwak, H.G. and Filippou, F.C. (1990), "Finite element analysis of reinforced concrete structures under monotonic loads. In Structural Engineering, Mechanics and Materials", Department of Civil Engineering, University of California Berkeley, CA. 

  24. Kwak, H.G. and Gang, H.G. (2015), "An improved criterion to minimize FE mesh-dependency in concrete structures under high strain rate conditions", Int. J. Impact Eng., 86, 84-95. https://doi.org/10.1016/j.ijimpeng.2015.07.008. 

  25. Kwak, H.G. and Hwang, J.W. (2010), "FE model to simulate bond-slip behavior in composite concrete eam bridges", Comput. Struct., 88(17-18), 973-984. https://doi.org/10.1016/j.compstruc.2010.05.005. 

  26. Kwak, H.G. and Kim, J.K. (2006), "Implementation of bond-slip effect in analyses of RC frames under cyclic loads using layered section method", Eng. Struct., 28(12), 1715-1727. https://doi.org/10.1016/j.engstruct.2006.03.003. 

  27. Kwak, H.G. and Kim, S.P. (2001), "Nonlinear analysis of RC beam subject to cyclic loading", J. Struct. Eng., 127(12), 1436-1444. 

  28. Kwak, H.G. and Kim, S.P. (2002), "Nonlinear analysis of RC beams based on moment-curvature relation", Comput. Struct., 80, 615-628. 

  29. Kwak, H.G., Kim, S.P. and Kim, J.E. (2004), "Nonlinear dynamic analysis of RC frames using cyclic moment-curvature relation", Struct. Eng. Mech., 17(3_4), 357-378. https://doi.org/10.12989/sem.2004.17.3_4.357. 

  30. Lakshmi, B. and Shanmugam, N.E. (2002), "Nonlinear analysis of in-filled steel-concrete composite columns", J. Struct. Eng., 128(7), 922-933. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(922). 

  31. Li, J. and Hao, H. (2013), "Influence of brittle shear damage on accuracy of the two-step method in prediction of structural response to blast loads", Int. J. Impact Eng., 54, 217-231. https://doi.org/10.1016/j.ijimpeng.2012.11.008. 

  32. Lloyd, A.E.W. (2015). "Blast retrofit of reinforced concrete columns", Ph.D. Dissertation, University of Ottawa. 

  33. Low, H.Y. and Hao, H. (2002), "Reliability analysis of direct shear and flexural failure modes of RC slabs under explosive loading", Eng. Struct., 24(2), 189-198. https://doi.org/10.1016/S0141-0296(01)00087-6. 

  34. Magnusson, J. and Hallgren, M. (2000), "High performance concrete beams subjected to shock waves from air blast", Swedish Defence Research Agency. 

  35. Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded R.C. Plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proceedings of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Loads, 15-22. https://doi.org/http://dx.doi.org/10.5169/seals-13741. 

  36. O.Hallquist, J. (2007), LS-DYNA Keyword User's Manual. 

  37. Park, G.K., Kwak, H.G. and Filippou, F.C. (2017), "Blast analysis of RC beams based on moment-curvature relationship considering fixed-end rotation", J. Struct. Eng., 143(9), 04017104. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001837. 

  38. Park, G.K., Kwak, H.G. and Filippou, F.C. (2018), "Evaluation of nonlinear behavior and resisting capacity of reinforced concrete columns subjected to blast loads", Eng. Fail. Anal., 93, 268-288. https://doi.org/10.1016/j.engfailanal.2018.07.024. 

  39. Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, A Wiley-Interscience Publication. 

  40. Qu, Y., Li, X., Kong, X., Zhang, W. and Wang, X. (2016), "Numerical simulation on dynamic behavior of reinforced concrete beam with initial cracks subjected to air blast loading", Eng. Struct., 128, 96-110. https://doi.org/10.1016/j.engstruct.2016.09.032. 

  41. Saatcioglu, M., Lloyd, A., Jacques, E., Braimah, A. and Doudak, G. (2011), "Focused research for development of a CSA standard on design and assessment of buildings subjected to blast loads", Interim Report Submitted to Public Works and Government Services Canada, Hazard Mitigation and Disaster Management Research Centre, University of Ottawa, Ottawa, Canada. 

  42. Sawyer, H.A. (1964), "Design of concrete frames for two failure stages", ACI Spec. Publ., 12, 405-437. 

  43. Scott, B.D., Park, R. and Priestley, M.J.N. (1982), "Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates", ACI J. Proc., 79(1), 13-27. 

  44. Shi, Y., Hao, H. and Li, Z.X. (2008), "Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads", Int. J. Impact Eng., 35(11), 1213-1227. https://doi.org/10.1016/j.ijimpeng.2007.09.001 

  45. Silva, P.F. and Lu, B. (2009), "Blast resistance capacity of reinforced concrete slabs", J. Struct. Eng., 135(6), 708-716. 

  46. Solomos, G. and Berra, M. (2010), "Rebar pullout testing under dynamic Hopkinson bar induced impulsive loading", Mater. Struct./Materiaux et Constructions, 43(1-2), 247-260. https://doi.org/10.1617/s11527-009-9485-z. 

  47. Taucer, F.F., Spacone, E. and Filippou, F.C. (1991), "A fiber beamcolumn element for seismic response analysis of reinforced concrete structures", Earthquake Engineering Research Center. 

  48. Wu, Y., Crawford, J.E. and Magallanes, J.M. (2012), "Performance of LS-DYNA concrete constitutive models", 12th International LS-DYNA Users Conference, 1, 1-14. 

  49. Xu, J., Wu, C. and Li, Z.X. (2014), "Analysis of direct shear failure mode for RC slabs under external explosive loading", Int. J. Impact Eng., 69, 136-148. https://doi.org/10.1016/j.ijimpeng.2014.02.018. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로