$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고해상도 수치예측자료 생산을 위한 경도-역거리 제곱법(GIDS) 기반의 공간 규모 상세화 기법 활용
Implementation of Spatial Downscaling Method Based on Gradient and Inverse Distance Squared (GIDS) for High-Resolution Numerical Weather Prediction Data 원문보기

대기 = Atmosphere, v.31 no.2, 2021년, pp.185 - 198  

양아련 (봄인 사이언스 컨설팅) ,  오수빈 (봄인 사이언스 컨설팅) ,  김주완 (공주대학교 대기과학과) ,  이승우 (기상청 수치모델링센터 수치자료응용과) ,  김춘지 (봄인 사이언스 컨설팅) ,  박수현 (봄인 사이언스 컨설팅)

Abstract AI-Helper 아이콘AI-Helper

In this study, we examined a spatial downscaling method based on Gradient and Inverse Distance Squared (GIDS) weighting to produce high-resolution grid data from a numerical weather prediction model over Korean Peninsula with complex terrain. The GIDS is a simple and effective geostatistical downsca...

주제어

표/그림 (12)

참고문헌 (32)

  1. Ahn, J.-B., J. Lee, and E.-S. Im, 2012: The reproducibility of surface air temperature over South Korea using dynamical downscaling and statistical correction. J. Meteor. Soc. Japan Ser. II, 90, 493-507, doi:10.2151/jmsj.2012-404. 

  2. Ahrens, C. D., 2003: Meteorology today: An introduction to weather, climate, and the environment. 7th ed. Brooks Cole, 624 pp. 

  3. Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor. Climatol., 3, 396-409. 

  4. Cardoso, R. M., P. M. M. Soares, P. M. A. Miranda, and M. Belo-Pereira, 2012: WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int. J. Climatol., 33, 2591-2608, doi:10.1002/joc.3616. 

  5. Case, J. L., J. Manobianco, J. E. Lane, C. D. Immer, and F. J. Merceret, 2004: An objective technique for verifying sea breezes in high-resolution numerical weather prediction models. Wea. Forecasting, 19, 690-705. 

  6. Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367-374. 

  7. Daly, C., 2002: Variable influence of terrain on precipitation patterns: Delineation and use of effective terrain height in PRISM. Oregon State University, 1-7. 

  8. Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor. Climatol., 33, 140-158. 

  9. Di Piazza, A., F. Lo Conti, L. V. Noto, F. Viola, and G. La Loggia, 2011: Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf., 13, 396-408, doi:10.1016/j.jag.2011.01.005. 

  10. Flint, L. E, and A. L. Flint, 2012: Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol. Process., 1, 2, doi:10.1186/2192-1709-1-2. 

  11. Guan, H., X. Zhang, O. Makhnin, and Z. Sun, 2013: Mapping mean monthly temperatures over a coastal hilly area incorporating terrain aspect effects. J. Hydrometeor., 14, 233-250, doi:10.1175/JHM-D-12-014.1. 

  12. Heikkila, U., A. Sandvik, and A. Sorterberg, 2011: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37, 1551-1564, doi:10.1007/s00382-010-0928-6. 

  13. Johnson, G. L., C. Daly, G. H. Taylor, and C. L. Hanson, 2000: Spatial variability and interpolation of stochastic weather simulation model parameters. J. Appl. Meteor. Climatol., 39, 778-796. 

  14. Journel, A. G., and C. J. Huijbregts, 1978: Mining Geostatistics. Academic Press, 600 pp. 

  15. Kim, D.-K., and H.-Y. Chun, 2000: A numerical study of the orographic effects associated with a heavy rainfall event. J. Korean Meteor. Soc., 36, 441-454 (in Korean with English abstract). 

  16. Kim, M.-K., M.-S. Han, D.-H. Jang, S.-G. Baek, W.-S. Lee, Y.-H. Kim, and S. Kim, 2012: Production technique of observation grid data of 1km resolution. J. Clim. Res., 7, 55-68 (in Korean with English abstract). 

  17. Kim, T.-J., H.-H. Kwon, D.-R. Lee, and S.-K. Yoon, 2014: Development of stochastic downscaling method for rainfall data using GCM. J. Korea Water Resour. Assoc., 47, 825-838, doi:10.3741/JKWRA.2014.47.9.825 (in Korean with English abstract). 

  18. Kravchenko, A. N., 2003: Influence of spatial structure on accuracy of interpolation methods. Soil. Sci. Soc. Amer. J., 67, 1564-1571. 

  19. Kwon, H.-H., T. J. Kim, S.-H. Hwang, and T.-W. Kim, 2013: Development of daily rainfall simulation model based on homogeneous hidden markov chain. J. Korean Soc. Civ. Eng., 33, 1861-1870, doi:10.12652/Ksce.2013.33.5.1861 (in Korean with English abstract). 

  20. Lee, J., J.-B. Ahn, M.-P. Jung, and K.-M. Shim, 2017: A study on the method of producing the 1 km resolution seasonal prediction of temperature over South Korea for boreal winter using genetic algorithm and global elevation data based on remote sensing. Korean J. Remote Sens., 33, 661-676, doi:10.7780/kjrs.2017.33.5.2.6 (in Korean with English abstract). 

  21. Lim, Y.-K., D. W. Shin, S. Cocke, T. E. LaRow, J. T. Schoof, J. J. O'Brien, and E. P. Chassignet, 2007: Dynamically and statistically downscaled seasonal simulations of maximum surface air temperature over the southeastern United States. J. Geophys Res. Atmos., 112, D24102. doi:10.1029/2007JD008764. 

  22. Lin, Z.-H., X.-G. Mo, H.-X. Li, and H.-B. Li, 2002: Comparison of three spatial interpolation methods for climate variables in China. Acta Geogr. Sin., 57, 47-56. 

  23. Lo, J. C.-F., Z.-L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the weather research and forecasting (WRF) model. J. Geophys. Res. Atmos., 113, D09112. 

  24. Mohammadi, S. A., M. Azadi, and M. Rahmani, 2017: Comparison of spatial interpolation methods for gridded bias removal in surface temperature forecasts. J. Meteor. Res., 31, 791-799, doi:10.1007/s13351-017-6135-1. 

  25. Myers, D. E., 1982: Matrix formulation of co-kriging. J. Int. Ass. Math. Geol., 14, 249-257. 

  26. Nalder, I. A., and R. W. Wein, 1998: Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agr. Forest Meteorol., 92, 211-225. 

  27. Reinstorf, F., M. Binder, M. Schirmer, J. Grimm-Strele, and W. Walther, 2005: Comparative assessment of regionalisation methods of monitored atmospheric deposition loads. Atmos. Environ., 39, 3661-3674. 

  28. Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proc. The 23rd ACM National Conference. New York, Association for Computing Machinery, 517-524. 

  29. Stahl, K., R. D. Moore, J. A. Floyer, M. G. Asplin, and I. G. McKendry, 2006: Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. Forest Meteorol., 139, 224-236. 

  30. Tang, L., X. Su, G. Shao, H. Zhang, and J. Zhao, 2012: A Clustering-Assisted Regression (CAR) approach for developing spatial climate data sets in China. Environ. Modell. Softw., 38, 122-128, doi:10.1016/j.envsoft.2012.05.008. 

  31. Thiessen, A. H., 1911: Precipitation averages for large areas. Mon. Wea. Rev., 39, 1082-1089. 

  32. von Storch, H., 1995: Spatial patterns: EOFs and CCA. In H. von Storch et al. Eds., Analysis of Climate Variability: Applications of Statistical Techniques, Springer, 231-263. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로