$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

검덕 연-아연 광상의 돌로마이트 산상과 화학조성
Occurrence and Chemical Composition of Dolomite from Komdok Pb-Zn Deposit 원문보기

광물과 암석 = Korean journal of mineralogy and petrology, v.34 no.2, 2021년, pp.107 - 120  

유봉철 (한국지질자원연구원 DMR융합연구단)

초록
AI-Helper 아이콘AI-Helper

검덕 연-아연 광상은 한반도에서 가장 규모가 큰 연-아연 광상으로 지체구조상 고원생대의 마천령층군이 포함된 Jiao Liao Ji belt내 혜산-리원 광화대에 위치한다. 이 광상의 주변지질은 고원생대의 마천리층군 변성퇴적암류와 이를 관입한 중생대의 만탑산 관입암체 및 신생대의 현무암으로 구성된다. 이 광상은 고원생대의 마천리층 변성퇴적암류내에 층상광체 및 맥상광체로 산출되며 퇴적분기형 광상에 해당된다. 이 광상에서 산출되는 돌로마이트들은 산출 광물조합 및 정출순서를 기초로 1)모암인 돌로마이트(D0), 2)각섬암상의 변성작용에 의한 초기의 돌로마이트(투각섬석, 양기석, 투휘석, 섬아연석, 방연석 등)(D1), 3)각섬암상의 변성작용에 의한 말기의 돌로마이트(활석, 방해석, 석영, 섬아연석, 방연석 등)(D2), 4)석영맥과 함께 산출되는 돌로마이트(백색운모, 녹니석, 섬아연석, 방연석 등)(D3)으로 산출된다. 이들 돌로마이트의 화학조성은 각각 Ca1.00-1.20Mg0.80-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D0), Ca1.00-1.02M0.97-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D1), Ca0.99-1.03Mg0.93-0.98Fe0.01-0.05Mn0.00-0.01As0.00-0.01(CO3)2(D2) 및 Ca0.95-1.04Mg0.59-0.68Fe0.30-0.36Mn0.00-0.01(CO3)2(D3)로써 이론적인 돌로마이트의 화학조성보다 미량원소들의 함량이 높다. 이 미량원소들은 FeO, MnO, HfO2, ZnO, PbO, Sb2O5 및 As2O5 원소들이며 광화작용이 진행됨에 따라 FeO, MnO, ZnO, Sb2O5 및 As2O5 원소들의 함량이 증감 변화가 있으나 HfO2와 PbO 원소들의 함량은 증감 변화가 없다. 검덕광상의 Do, D1 및 D2는 Ferroan 돌로마이트에 해당되며 D3는 Ferroan 돌로마이트와 철백운석(ankerite)에 해당된다. 따라서 1)모암인 돌로마이트(D0)는 고원생대(2012~1700 Ma) 해양증발환경에서 실리카와 함께 퇴적된 후 계속적인 속성작용에 의해 돌로마이트화 작용에 의해 형성되었다. 2)초기의 돌로마이트(D1)는 고원생대의 리원암군 관입(1890~1680 Ma)에 의한 변성작용(최소 각섬암상)에 의한 열수교대작용에 의해 형성되었다. 3)말기의 돌로마이트(D2)는 각섬암상의 변성작용에 의한 계속적인 온도와 압력의 감소에 의해 잔존 유체로부터 형성되었다. 또한 4)석영맥의 돌로마이트(D3)는 중생대의 만탑산 관입암체의 관입(213~181 Ma)에 의해 형성되었다.

Abstract AI-Helper 아이콘AI-Helper

The Komdok Pb-Zn deposit, which is the largest Pb-Zn deposit in Korea, is located at the Hyesan-Riwon metallogenic zone in Jiao Liao Ji belt included Paleoproterozoic Macheolryeong group. The geology of this deposit consists of Paleoproterozoic metasedimentary rocks, Jurassic Mantapsan intrusive roc...

주제어

표/그림 (7)

참고문헌 (31)

  1. Biondi, J.C., Santos, R.V. and Cury, L.F., 2013, The Paleoproterozoic Aripuana Zn-Pb-Ag (Au, Cu) volcanogenic massive sulfide deposit, Mato Grosso, Brazil: Geology, geochemistry of alteration, carbon and oxygen isotope modeling, and implications for genesis. Economic Geology, 108, 781-811. 

  2. Bouabdellah, M., Sangster, D.F., Leach, D.L., Brown, A.C., Johnson, C. and Emsbo, P., 2012, Genesis of the Touissit-Bou Beker Mississippi Valley-Type District (Morocco-Algeria) and Its Relationship to the Africa-Europe Collision. Economic Geology, 107, 117-146. 

  3. Chen, C., Lu, A., Cai, K. and Zhai, Y., 2002, Sedimentary characteristics of Mg-rich carbonate fromations and minerogenic fluids of magnesite and talc occurrences in early Proterozoic in eastern Liaoning province, China. Science in China, 45, 84-92. 

  4. Choi, K.S., 2011, The mining industry of North Korea. The Korean Journal of Defense Analysis, 23, 211-230. 

  5. Duan, X.X., Zeng, Q.D., Wang, Y.B., Zhou, L.L. and Chen, B., 2017, Genesis of the Pb-Zn deposits of the Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA-ICPMS trace element analysis and CO-S-Pb isotopes. Ore Geology Reviews, 89, 752-771. 

  6. Gomez-Rivas, E., Corbella, M., Martin-Martin, J.D., Stafford, S.L., Teixell, A., Bons, P.D., Griera, A. and Cardellach, E., 2014, Reactivity of dolomitizing fluids and Mg source evaluation of fault controlled dolomitization at the Benicassim outcrop analogue (Maestrat basin, E Spain). Marine and Petroleum Geology, 55, 26-42. 

  7. Grandia, F., Canals, A., Cardellach, E., Banks, D.A. and Perona, J., 2003, Origin of ore-forming brines in sediment-hosted Zn-Pb deposits of the Basque-Cantabrian Basin, Northern Spain. Economic Geology, 98, 1397-1411. 

  8. Hendry, J.P., Gregg, J.M., Shelton, K.L., Somerville, I. and Crowley, S., 2015, Origin, characteristics and distribution of fault-related and fracture-related dolomitization: Insights from Mississippian carbonates, Isle of Man, UK. Sedimentology, 62, 717-752. 

  9. Johnson, A.W., Shelton, K.L., Gregg, J.M., Somerville, I.D., Wright, W.R. and Nagy, Z.R., 2009, Regional studies of dolomites and their included fluids: Recognizing multiple chemically distinct fluids during the complex diagenetic history of Lower Carboniferous (Mississippian) rocks of the Irish Zn-Pb ore field. Mineralogy and Petrology, 96, 1-18. 

  10. Kim, Y.D., Park, H.S., Kim, S.Y. and Lee, J.H., 2005, A study on the mine development of North Korea and interKorean mineral resources cooperation. Economic and Environmental Geology, 38, 197-206. 

  11. Kinosaki, Y., 1932, Geological Atlas of Chosen, No. 14. Saitoku Shimpukujo Koho and Gosokuri Sheets, 26p. 

  12. Koh, S.M., Lee, G.J. and Yoon, E., 2013, Status of mineral resources and mining development in North Korea. Economic and Environmental Geology, 46, 291-300. 

  13. Koh, S.M., Lee, G.J., You, B.W., Kim, N.H. and Lee, B.H., 2019, Geology and mineralization of the Northern Korean Peninsula. Korea Institute of Geoscience and Mineral Resources, 322p. 

  14. Konari, M.B. and Rastad, E., 2018, Nature and origin of dolomitization associated with sulphide mineralization: New insights from the Tappehsorkh Zn-Pb (-Ag-Ba) deposit, Irankuh mining district, Iran. Geological Journal, 53, 1-21. 

  15. Koo, Y.H., Kim, S.M., Oh, M.C. and Park, H.D., 2018, Landslide risk assessment at the Gumdeok mine in North Korea using satellite images and GIS spatial data. Journal of the Korean Society of Mineral and Energy Resources Engineering, 55, 259-271. 

  16. Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J. and Walters, S., 2005, Sediment-hosted Lead-Zinc deposits: A global perspective. Economic Geology, 100th Anniversary volume, 561-607. 

  17. Li, S.Z., Zhao, G.C., Santosh, M., Liu, X. and Dai, L.M., 2011, Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao-Liao-Ji belt, North China Craton: A review. Geological Journal, 46, 525-543. 

  18. Li, Z., Chen, B. and Wei, C., 2017, Is the Paleoproterozoic Jiao-Liao-Ji belt (North China Craton) a rift?. International Journal of Earth Sciences, 106, 355-375. 

  19. Morrow, D.W., 1998, Regional subsurface dolomitization: Models and constraints. Geoscience Canada, 25, 57-70. 

  20. Nagy, Z.R., Gregg, J.M., Shelton, K.L., Becker, S.P., Somerville, I.D. and Johnson, A.W., 2004, Early dolomitization and fluid migration through the Lower Carboniferous carbonate platform in the SE Irish Midlands: implications for reservoir attributes. In: The geometry and petrogenesis of dolomite hydrocarbon reservoirs, Braithwaith, C.J., Rizzi, G., Darke, G. (eds), London: Geological Society, London, Special Publications 235, 367-392. 

  21. Rajabi, A., Rastad, E., Canet, C. and Alfonso, P., 2015, The early Cambrian Chahmir shale-hosted Zn-Pb deposit, Central Iran: An example of vent-proximal SEDEX mineralization. Mineralium Deposita, 50, 571-590. 

  22. Ratkin, V.V., Gvozdev, V.I. and Karas, O.A., 2014, Boronpolymetallic metallogeny of the north and northeast of the Sino-Korean craton. Russian Journal of Pacific Geology, 8, 372-380. 

  23. Reinhold, C., 1998, Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121, 71-95. 

  24. Ren, Y., Zhong, D., Gao, C., Yang, Q., Xie, R., Jia, L., Jiang, Y. and Zhong, N., 2017, Dolomite geochemistry of the Cambrian Longwangmiao formation, eastern Sichuan basin: Implication for dolomitization and reservoir prediction. Petroleum Research, 2, 64-76. 

  25. Wilkinson, J.J., 2010, A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn-Pb deposits. Economic Geology, 105, 417-442. 

  26. Wilkinson, J.J., Eyre, S.L. and Boyce, A.J., 2005, Ore-forming processes in Irish-Type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulphides at the Lisheen mine. Economic Geology, 100, 63-86. 

  27. Wright, W.R., Somerville, I.D., Gregg, J.M., Shelton, K.L. and Johnson, A.W., 2004, Irish Lower Carboniferous replacement dolomite: Isotopic modelling evidence for a diagenetic origin involving low-temperature modified sea-water. In: The geometry and petrogenesis of dolomite hydrocarbon reservoirs, Braithwaith, C.J., Rizzi, G., Darke, G. (eds), London: Geological Society, London, Special Publications, 235, 75-97. 

  28. Yoon, E., 2011, Status and future of the North Koream minerals sector. The Korean Journal of Defense Analysis, 23, 191-210. 

  29. Zentmyer, R.A., Pufahl, P.K., James, N.P. and Hiatt, E.E., 2011, Dolomitization on an evaporitic Paleoproterozoic ramp: Widespread synsedimentary dolomite in the Denault Formation, Labrador Trough, Canada. Sedimentary Geology, 238, 116-131. 

  30. Zhai M., Zhang, X.H., Zhang, Y.B., Wu, F.Y., Peng, P., Li, Q.L., Li, Z., Guo, J., Li, T.S., Zhao, L., Zhou, L.G. and Zhu, X., 2019, The geology of North Korea: An overview. Earth Science Reviews, 194, 57-96. 

  31. https://ko.wikipedia.org/wiki/komdokmine. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로