$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

교합형 동방향 이축압출기의 스크류 조합에 대한 고찰
A Review on the Screw Configuration of Intermeshing Co-rotating Twin Screw Extruder 원문보기

Korean chemical engineering research = 화학공학, v.59 no.3, 2021년, pp.305 - 315  

이시춘 (단국대학교 공과대학 화학공학과) ,  김형수 (중원대학교 항공재료공학과)

초록
AI-Helper 아이콘AI-Helper

교합형 동방향이축압출기는 고분자재료의 컴파운딩에 주로 사용되는 기계이다. 이축압출기는 가공하는 재료와 생산제품에 적합한 스크류 조합을 설계하여 품질과 생산성이 양호한 컴파운딩공정을 구축할 수 있다. 스크류조합을 구성하는 스크류와 니딩 엘리먼트의 종류, 형상 및 사양에 대하여 정리하였고, 각각의 엘리먼트가 조합될 때 고분자 수지의 가공성에 미치는 영향에 대하여 알아보았다. 범용수지의 대량생산에 보편적으로 적용되는 스크류 조합의 원리를 설명하였고, 피딩, 용융혼련 및 미터링영역에 적합한 스크류조합의 방향과 사례를 나열하였다. 액상첨가제나 무기필러의 사이드피딩, 반응압출, 탈기공정, 밝은 색상과 투명도가 요구되는 제품의 생산 및 겉보기비중이 낮은 재료의 가공 등 각각의 경우에 맞는 스크류조합의 방향과 원리를 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

An intermeshing corotating twin screw extruder is mainly used for compounding polymeric materials. Twin screw extruder can adopt modular-type screw configurations, which directly controls the quality and productivity of the products. The types, shapes, and specifications of the screw and kneading el...

주제어

표/그림 (10)

참고문헌 (58)

  1. White, J. L., Twin Screw Extrusion. Hanser Publishers, 1993. 

  2. Mascia, L. The Role of Additives in Plastics, Edward Arnold, 1972. 

  3. Mascia, L. and Xanthos, M., "An Overview of Additives and Modifiers for Polymer Blends: Fact, Deductions, and Uncertainties," Adv. Polym. Technol., 11, 237-248(1992). 

  4. Xanthos, M., Functional Fillers for Plastics, Wiley-VCH, 2005. 

  5. Kumar, A., Sharma, K. and Dixit, A. R., "Carbon Nanotube- and Graphene-reinforced Multiphase Polymeric Composites: Review on Their Properties and Applications," J. Mater. Sci., 55, 2682-2724(2020). 

  6. Rauwendaal, C., Polymer Extrusion. Hanser Publishers, 1990. 

  7. Jongbloed, H. A., Kiewiet, J. A., Van Dijk, J. H., Janssen, L. P., B. M. "The Self-wiping co-rotating Twin-screw Extruder as a Polymerization Reactor for Methacrylates," Polym. Eng. Sci., 35, 1569-1579(1995). 

  8. Noriega, E. and Rauwendaal, C., Troubleshooting the Extrusion Process, Hanser Publishers, 2010. 

  9. Villmow, T., Kretzschmar, B. and Potschke, P., "Influence of Screw Configuration, Residence Time, and Specific Mechanical Energy in Twin Screw Extrusion of Polycaprolactone/multi-walled Carbon Nanotube Composites," Compos. Sci. Technol., 70, 2045-2055(2010). 

  10. Kang, M. S., Kang, B. S., Sim, H. S., Son, J. M., Lee, K. H. and Park, M., "Effect of Screw Configuration on Filler Dispersion in Intermeshing Corotating Twin Screw Extruder," Polym.-Korea, 35, 99-105(2011). 

  11. Lekube, B. M., Purgleitner, B., Renner, K. and Burgstaller, C., "Influence of Screw Configuration and Processing Temperature on the Properties of Short Glass Fiber Reinforced Propylene Composite," Polym. Eng. Sci., 59, 1552-1559(2019). 

  12. Villmow, T., Potschke, P., Pegel, S., Haussler, L. and Kretzschmar, B., "Influence of Twin-screw Extrusion Conditions on the Dispersion of Multi-walled Carbon Nanotubes in a Poly(lactic acid) Matrix," Polymer, 49, 3500-3509(2008). 

  13. Todd, D. B., "Melting of Plastics on Kneading Blocks," Intern. Polym. Proc., 8, 113-118(1993). 

  14. Rauwendaal, C., "Dispersed Solid Melting Theory," SPE-ANTEC Tech. Papers, 51, 2232-2237(1993). 

  15. Busby, M. L., McCullough, T. W., Hughes, K. R., Kirk, R. O., "Melting of Homopolymers in co-rotating Intermeshing Twinscrew Extruders," SPE-ANTEC Tech. Papers, 54, 3571-3576(1996). 

  16. Shih, C. K., Tynan, D. G. and Denelsbek, D. A., "Rheological Properties of Multicomponent Polymer Systems Undergoing Melting or Softening During Compounding," Polym. Eng. Sci., 31, 1670-1673(1991). 

  17. Gogos, C. G., Tadmor, Z. and Kim, M. H., "Melting Phenomena and Mechanisms in Polymer Processing Equipment," Adv. Polym. Technol., 17, 285-305(1998). 

  18. Todd, D. B. and Irving, H. F., "Axial Mixing and Self-wiping Reactor," Chem. Eng. Prog., 65, 84-89(1969). 

  19. Todd, D. B., "Drag and Pressure Flow in a Twin-screw-extruder," Int. Polym. Proc., 5, 143-147(1991). 

  20. Goffart, D., Van Der Wal, D. J., Klomp, E. M., Hoogstraten, H. W., Janssen, L. P. B. M., Breysse, L. and Trolez, Y., "Three-dimensional Flow Modeling of a Self-wiping Corotating Twin-screw Extruder. Part I: The Transporting Section," Polym. Eng. Sci., 36, 901-911(1996). 

  21. Goffart, D., Klomp, E. M., Hoogstraten, H. W. and Janssen, L. P. B. M., "Three-dimensional Flow Modeling of a Self-wiping Corotating Twin-screw Extruder. Part II: The Kneading Section," Polym. Eng. Sci., 36, 912-924(1996). 

  22. Bawiskar, S. and White, J. L., "Melting Model for Modular Self Wiping Co-rotating Twin Screw Extruders," Polym. Eng. Sci., 38, 727-740(1998). 

  23. Rauwendaal, C., "Analysis and Experimental Evaluation of Twin Screw Extruders," Polym. Eng. Sci., 21, 1092-1100(1981). 

  24. Bawiskar, S. and White, J. L., "A Composite Model for Solid Conveying, Melting, Pressure and Fill Factor Profiles in Modular co-rotating Twin Screw Extruders," Int. Polym. Proc., 12, 331-340(1997). 

  25. Bawiskar, S. and White, J. L., "Solids Conveying and Melting in a Starve Fed Self-wiping co-rotating Twin Screw Extruder," Int. Polym. Proc., 10, 105-110(1995). 

  26. Yacu, W. A., "Modeling a Twin Screw co-rotating Extruder," J. Food Process Eng., 8, 1-21(1985). 

  27. Potente, H. and Melisch, U., "Theoretical and Experimental Investigations of the Melting of Pellets in co-rotating Twin-screw Extruders," Int. Polym. Proc., 11, 101-108(1996). 

  28. Lewandowski, A., Wilczynski, K. J., Nastaj, A. and Wilczynski, K., "A Composite Model for An Intermeshing Counter-rotating Twin-screw Extruder and Its Experimental Verification," Polym. Eng. Sci., 55, 2838-2848(2015). 

  29. Potente, H., Melisch, U. and Palluch, K. P., "A Physico-mathematical Model for Solids Conveying in co-rotating Twin Screw Extruders," Int. Polym. Proc., 11, 29-41(1996). 

  30. Xanthos, M., Reactive Extrusion: Principles and Practice. Hanser Publishers, 1992. 

  31. Beyer, G. and Hopmann, C., Reactive Extrusion: Principles and Applications. Wiley-VCH, 2018. 

  32. Lee, S. M., Park, J. C., Lee, S. M., Ahn, Y. J. and Lee, J. W., "Inline Measurement of Residence Time Distribution in Twin-screw Extruder Using Non-destructive Ultrasound," Korea-Australia Rheol. J., 17, 87-95(2005). 

  33. Al-Itry, R., Lamnawar, K. and Maazouz, A., "Reactive Extrusion of PLA, PBAT with a Multi-functional Epoxide: Physicochemical and Rheological Properties," Eur. Polym. J., 58, 90-102(2014). 

  34. Todd, D. B., "Residence Time Distribution in Twin-screw Extruders," Polym. Eng. Sci., 15, 437-443(1975). 

  35. Poulesquen, A., Vergnes, B., Cassagnau, P., Michiel, A., Carneiro, O. S. and Covas, J. A., "A Study of Residence Time Distribution in co-rotating Twin Screw Extruders. Part II: Experimental Validation," Polym. Eng. Sci., 43, 1849-1862(2003). 

  36. Poulesquen, A. and Vergnes, B., "A Study of Residence Time Distribution in co-rotating Twin-screw Extruders. Part I: Theoretical Modeling," Polym. Eng. Sci., 43, 1841-1848(2003). 

  37. Collins, G. P., Denson, C. D. and Astarita, G., "The Length of a Transfer Unit (LTU) for Polymer Devolatilization Processes in Screw Extruders," Polym. Eng. Sci., 23, 323-327(1983). 

  38. Collins, G. P., Denson, C. D. and Astarita, G., "Determination of Mass Transfer Coefficients for Bubble-free Devolatilization of Polymeric Solutions in Twin-screw Extruders," AIChE J., 31, 1288-1296(1985). 

  39. Biesenberger, J. A., Dey, S. K. and Brizzolara, J., "Devolatilization of Polymer Melts: Machine Geometry and Scale Factors," Polym. Eng. Sci., 30, 1493-1499(1990). 

  40. Foster, R. W. and Lindt, J. T., "Bubble-free Devolatilization in Counterrotating Nonintermeshing Twin-screw Extruder," Polym. Eng. Sci., 30, 424-430(1990). 

  41. Wang, N. H., Sakai, T. and Hashimoto, N., "Modeling of Polymer Devolatilization in a Multi-vent Screw Extruder," Int. Polym. Proc., 10, 296-304(1995). 

  42. Wang, N. H., Sakai, T. and Hashimoto, N., "Pumping Characteristics of an Intermeshing co-rotating Twin Screw Extruder," Int. Polym. Proc., 13, 27-32(1998). 

  43. White, J. L., Keum, J., Jung, H., Ban, K. and Bumm, S., "Corotating Twin-screw Extrusion Reactive Extrusion Devolatilization Model and Software," Polym. Plast. Technol. Eng., 45, 539-548 (2006). 

  44. Foster, R. W. and Lindt, J. T., "Bubble Growth Controlled Devolatilization in Twin-screw Extruders," Polym. Eng. Sci., 29, 178-185(1989). 

  45. Foster, R. W. and Lindt, J. T., "Twin Screw Extrusion Devolatilization: From Foam to Bubble Free Mass Transfer," Polym. Eng. Sci., 30, 621-626(1990). 

  46. Ohara, M., Sasai, Y., Umemoto, S., Obata, Y., Sugiyama, T., Tanifuji, S., Kihara, S. and Taki, K., "Experimental and Numerical Simulation Study of Devolatilization in a Self-Wiping Corotating Parallel Twin-Screw Extruder," Polymers, 12, 2728(2020). 

  47. Breuer, O. and Sundararaj, U., "Big Returns from Small Fibers: A Review of Polymer/carbon Nanotube Composites," Polym. Compos., 25, 630-645(2004). 

  48. McNally, T. and Potschke, P., "Polymer-carbon Nanotube Composites: Preparation, Properties and Applications," Woodhead Publishing in Materials, 2011. 

  49. Mohan, V. B., Lau, K., Hui, D. and Bhattacharyya, D., "Graphenebased Materials and Their Composites: A Review on Production, Applications and Product Limitations," Compos. Part B-Eng., 142, 200-220(2018). 

  50. Kasaliwal, G. R., Pegel, S., Goldel, A., Potschke, P. and Heinrich, G., "Analysis of Agglomerate Dispersion Mechanisms of Multiwalled Carbon Nanotubes During Melt Mixing in Polycarbonate," Polymer, 51, 2708-2720(2010). 

  51. Novais, R. M., Simon, F., Paiva, M. C. and Covas, J. A., "The Influence of Carbon Nanotube Functionalization Route on the Efficiency of Dispersion in Polypropylene by Twin-screw Extrusion," Compos. Part A-Appl. S., 43, 2189-2198(2012). 

  52. Muller, M. T., Krause, B., Kretzschmar, B. and Potschke, P., "Influence of Feeding Conditions in Twin-screw Extrusion of PP/MWCNT Composites on Electrical and Mechanical Properties," Compos. Sci. Technol., 71, 1535-1542(2011). 

  53. Bangarusampath, D. S., Ruckdaschel, H., Alstadt, V., Sandler, J. K. W., Garray, D. and Shaffer, M. S. P., "Rheology and Properties of Melt-processed poly(ether ether ketone)/multi-wall Carbon Nanotube Composites," Polymer, 50, 5803-5811(2009). 

  54. Verma, P., Saini, P., Malik, R. S. and Choudhary, V., "Excellent Electromagnetic Interference Shielding and Mechanical Properties of High Loading Carbon-nanotubes/polymer Composites Designed Using Melt Recirculation Equipped Twin-screw Extruder," Carbon, 89, 308-317(2015). 

  55. Jiang, Z., Hornsby, P., McCool, R. and Murphy, A., "Mechanical and Thermal Properties of Polyphenylene Sulfide/multiwalled Carbon Nanotube Composites," J. Appl. Polym. Sci., 123, 2676-2683(2012). 

  56. Chowreddy, R. R., Nord-Varhaug, K. and Rapp, F., "Recycled Polyethylene Terephthalate/carbon Nanotube Composites with Improved Processability and Performance," J. Mater. Sci., 53, 7017-7029(2018). 

  57. Zhang, Q., Rastogi, S., Chen, D., Lippits, D. and Lemstra, P. J., "Low Percolation Threshold in Single-walled Carbon Nanotube/high Density Polyethylene Composites Prepared by Melt Processing Technique," Carbon, 44, 778-785(2006). 

  58. Arrigo, R. and Malucelli, G., "Rheological Behavior of Polymer/carbon Nanotube Composites: an Overview," Materials, 13, 2771 (2020). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로