$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

병렬 오토인코더 기반의 비정상 신호 탐지
Abnormal signal detection based on parallel autoencoders 원문보기

한국음향학회지= The journal of the acoustical society of Korea, v.40 no.4, 2021년, pp.337 - 346  

이기배 (제주대학교 해양시스템공학과) ,  이종현 (제주대학교 해양시스템공학과)

초록
AI-Helper 아이콘AI-Helper

일반적으로 비정상 신호 탐지 연구에서는 데이터 불균형으로 인해 정상 신호 특징을 주된 정보로 사용한다. 본 논문에서는 비정상 신호의 특징을 학습하는 병렬 오토인코더를 이용한 효율적인 비정상 신호 탐지기법을 제안한다. 제안된 동일한 구조로 이루어진 병렬 오토인코더는 정상 신호와 비정상 신호에 대한 특징을 학습하는 정상 복원기와 비정상 복원기로 구성되며, 정상 및 비정상 데이터를 순차적으로 학습함으로써 불균형 데이터 문제를 효율적으로 해결할 수 있다. 뿐만 아니라 보다 높은 탐지성능 향상을 위해서 부가적인 이진 분류기가 추가될 수 있다. 공개된 음향데이터를 이용한 실험결과, 제안된 병렬 탐지모델의 학습시간이 단일 오토인코더 탐지모델과 비교하여 약 1.31 ~ 1.61배 늘어나지만, 최소 22 % 이상의 Area Under Curve(AUC) 향상을 보였다. 또한, 사전에 훈련된 병렬 오토인코더를 이용하여 수중 음향데이터를 전이학습한 결과 수중 비정상 신호 AUC 탐지성능을 93 % 이상 향상시킬 수 있음을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Detection of abnormal signal generally can be done by using features of normal signals as main information because of data imbalance. This paper propose an efficient method for abnormal signal detection using parallel AutoEncoder (AE) which can use features of abnormal signals as well. The proposed ...

주제어

표/그림 (14)

참고문헌 (16)

  1. D. Y. Oh and I. D. Yun, "Residual error based on anomaly detection using auto-encoder in SMD machine sound," Sensors. 18, 1308 (2018). 

  2. K. Suefusa, T. Nishida, H. Purohit, R. Tanabe, T. endo, and Y. Kawaguchi, "Anomalous sound detection based on interpolation deep neural network," Proc. IEEE ICASP. 271-275 (2020). 

  3. R. Lang, R. Lu, C. Zhao, H. Qin, and G. Liu, "Graphbased semi-supervised one class support vector machine for detecting abnormal lung sounds," Applied Mathematics and Computation, 364, 124487 (2020). 

  4. R. Banerjee and A. Ghose, "A semi-supervised approach for identifying abnromal heart sounds using variational autoencoder," Proc. IEEE ICASP. 1249-1253 (2020). 

  5. G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, "Deep learning for anomaly detection: A review," ACM Computing Surveys (CSUR), 54, 1-38 (2021). 

  6. L. Ruff, R. A. Vandermeulen, L. Deecke, S. A. Siddiqui, A. Binder, E. Muller, and M. Kloft, "Deep one-class classification," Proc. Int. Conf. on machin learning (PMLR), 4393-4402 (2018). 

  7. S. Pidhorskyi, R. Almohsen, D. A. Adjeroh, and G. Doretto, "Generative probabilistic novelty detection with adversarial autoencoders," Advances in Neural Information Processing Systems, 31, 6823-6834 (2018). 

  8. Y. Koizumi, Y. Kawachi, and N. Harada, "Unsupervised detection of anomalous sound based on deep learning and the Neyman-Pearson lemma," IEEE/ACM Trans. on Audio, Speech, and Lang. Process. 27, 212-224 (2018). 

  9. H. Purohit, R. Tanabe, K. Ichige, T. Endo, Y. Nikaido, K. Suefusa, and Y. Kawaguchi, "MIMII dataset: sound dataset for malfunctioning industrial machine investigation and inspection," Detection and Classification of Acoustic Scenes and Events, 209-213 (2019). 

  10. Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tanabe, H. Purohit, K. Suefusa, T. Endo, M. Yasuda, and N. Harada, "Description and discussion on DCASE2020 challenge task2: unsupervised anomalous sound detection for machine condition monitoring," Detection and Classification of Acoustic Scenes and Events, 81-85 (2020). 

  11. H. Yang, S. Byun, K. Lee, Y. Choo, and K. Kim, "Underwater acoustic research trends with machine learning: General background," J. Ocean Eng. Technol. 34, 147-154 (2020). 

  12. H. Yang, K. Lee, Y. Choo, and K. Kim, "Underwater acoustic research trends with machine learning: Passive SONAR applications," J. Ocean Eng. Technol. 34, 227-236 (2020). 

  13. H. Yang, S. Byun, K. Lee, and K. Kim, "Underwater acoustic research trends with machine learning: Active SONAR applications," J. Ocean Eng. Technol. 34, 277-284 (2020). 

  14. R. J. Urick, Principles of Uunderwater Sound (Peninsula, Westport, 1993), pp. 181-200. 

  15. D. S. Dominguez, S. T. Guijarro, A. C. Lopez, and A. P. Gimenez, "ShipEar: An underwater vessel noise database," Applied Acoustics, 113, 64-69 (2016). 

  16. K. J. V. Raposa, G. Scowcroft, J. H. Miller, D. R. Ketten, and A. N. Popper, "Discovery of sound in the sea: Resources for educators, students, the public, and policymakers," in Handbook of The Effects of Noise on Aquatic Life 2, edited by A. N. Popper and A. Hawkins (Springer, New York, 2016). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로