$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

박테리아 부착억제 고분자 기반 고체 표면의 항균 코팅 연구 동향
Recent Progress of Antibacterial Coatings on Solid Substrates Through Antifouling Polymers 원문보기

공업화학 = Applied chemistry for engineering, v.32 no.4, 2021년, pp.371 - 378  

고상원 (한국철도기술연구원 교통환경연구실) ,  이재영 (한국철도기술연구원 교통환경연구실) ,  박덕신 (한국철도기술연구원 교통환경연구실)

초록
AI-Helper 아이콘AI-Helper

고체 표면의 박테리아 부착억제를 목적으로 고분자를 이용한 친수성 표면 개질 연구가 주목을 받고 있다. 부착억제기능은 세포독성이 아닌 작용으로 바이오필름 형성의 초기단계 방지를 목적으로 하며 친수성 또는 이온성 고분자가 도입된 고체 표면은 단백질, 박테리아 등 생물 개체의 부착방지에 효과적이다. 이는 표면에서의 친수층 형성으로 인한 표면 장벽 형성, 고분자 사슬에 의한 반발력과 삼투압성 응력 작용, 그리고 이온성 고분자와 세포 표면의 정전기적 상호작용에 기인한다. 부착억제를 위한 고분자의 표면 도입은 주로 표면 기능기와의 결합을 이용한 접합 방식과 자연모방 접착 기능기를 활용한 침적 방식으로 이루어지고 있다. 본 총설에서는 표면 도입 시 부착억제 기능을 보이는 대표적인 고분자의 종류, 코팅방법, 및 항균 특성을 소개하고 향후 공공시설, 산업 등으로의 대면적 응용을 위한 고려사항들을 다루고자 한다.

Abstract AI-Helper 아이콘AI-Helper

The formation of hydrophilic surface based on polymers has received great attention due to the anti-adhesion of bacteria on solid substrates. Anti-adhesion coatings are aimed at suppressing the initial step of biofilm formation via non-cytotoxic mechanisms, and surfaces applied hydrophilic or ionic ...

주제어

표/그림 (6)

참고문헌 (39)

  1. J. A. Lichter, K. J. Van Vliet, and M. F. Rubner, Design of antibacterial surfaces and interfaces: Polyelectrolyte multilayers as a multifunctional platform, Macromolecules, 42, 8573-8586 (2009). 

  2. W. K. Cho, S. M. Kang, and J. K. Lee, Non-biofouling polymeric thin films on solid substrates, J. Nanosci. Nanotechnol., 14, 1231-1252 (2014). 

  3. J. K. Lee, S. M. Kang, S. H. Yang, and W. K. Cho, Micro/nanostructured films and adhesives for biomedical applications, J. Biomed. Nanotechnol., 11, 2081-2110 (2015). 

  4. M. Cloutier, D. Mantovani, and F. Rosei, Antifacterial coatings: Challenges, Perspectives, and Opportunities, Trends in Biotechnol., 33, 637-652 (2015). 

  5. J. J. T. M. Swartjes, P. K. Sharma, T. G. van Kooten, H. C. van der Mei, M. Mahmoudi, H. J. Busscher, and E. T. J. Rochford, Current developments in antimicrobial surface coatings for biomedical applications, Curr. Med. Chem., 22, 2116-2129 (2015). 

  6. K. G. Neoh, M. Li, E.-T. Kang, E. Chiong, and P. A. Tambyah, Surface modification strategies for combating catheter-related complications: Recent advances and challenges, J. Mater. Chem. B, 5, 2045-2067 (2017). 

  7. I. Banerjee, R. C. Pangule, and R. S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv. Mater., 23, 690-718 (2011). 

  8. B. Wang, K. Ren. H. Chang, J. Wang, and J. Ji, Construction of degradable multilayer films for enhanced antibacterial properties, ACS Appl. Mater. Interfaces, 5, 4136-4143 (2013). 

  9. E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells, Langmuir, 17, 6336-6343 (2001). 

  10. H. Jiang, S. Manolache, A. C. Wong, and F. S. Denes, Synthesis of dendrimer-type poly(ehtylene gloycol) structures from plasma-functionalized silicone rubber surfaces, J. Appl. Polym. Sci., 102, 2324-2337 (2006). 

  11. R. S. Kane, P. Deschatelets, and G. M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces, Langmuir, 19, 2388-2391 (2003). 

  12. L. Li, S. Chen, and S. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption, J. Biomater. Sci. Polym. Ed., 18, 1415-1427 (2007). 

  13. J. Wu, C. Zhao, R. Hu, W. Lin, Q. Wang, J. Zhao, S. M. Bilinovich, T. C. Leeper, L. Li, H. M. Cheung, S. Chen, J. Zheng, Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers, Acta Biomaterialia, 10, 751-760 (2014). 

  14. S. Kim, J.-M. Moon, J. S. Choi, W. K. Cho, and S. M. Kang, Mussel-inspired approach to constructing robust multilayered alginate films for antibacterial applications, Adv. Fuct. Mater., 26, 4099-4105 (2016). 

  15. L. Xu, D. Pranantyo, K.-G. Neoh, and E.-T. Kang, Tea stains-inspired antifouling coatings based on tannic acid-functionalized agarose, ACS Sustainable Chem. Eng., 5, 3055-3062 (2017). 

  16. D. W. Kim, J.-M. Moon, S. Park, J. S. Choi, and W. K. Cho, Facile and effective antibacterial coatings on various oxide substrates, J. Ind. Eng. Chem., 68, 42-47 (2018). 

  17. P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, and L. Gram, Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion, Langmuir, 19, 6912-6921 (2003). 

  18. G. Cheng, Z. Zhang, S. Chen, J. D. Bryers, and S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials, 28, 4192-4199 (2007). 

  19. Q. Liu, A. Singh, R. Lalani, and L. Liu, Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization, Biomacromolecules, 13, 1086-1092 (2012). 

  20. K. Fujimoto, H. Tadokoro, Y. Ueda, and Y. Ikada, Polyurethane surface modification by graft polymerization of acrylamide for reduced protein adsorption and platelet adhesion, Biomaterials, 14, 442-448 (1993). 

  21. I. Cringus-Fundeanu, J. Luijten, H. C. van der Mei, H. J. Busscher, and A. J. Schouten, Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion, Langmuir, 23, 5120-5126 (2007). 

  22. C. Zhao, L. Li, Q. Wang, Q. Yu, and J. Zheng, Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces, Langmuir, 27, 4906-4913 (2011). 

  23. W. J. Yang, T. Cai, K.-G. Neoh, E.-T. Kang, G. H. Dickinson, S. L.-M. Teo, and D. Rittschof, Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel, Langmuir, 27, 7065-7076 (2011). 

  24. G. Cheng, G. Li, H. Xue, S. Chen, J. D. Bryers, S. Jiang, Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation, Biomaterials, 30, 5234-5240 (2009). 

  25. S. H. Ki, S. Lee, D. Kim, S. J. Song, S.-P. Hong, S. Cho, S. M. Kang, J. S. Choi, and W. K. Cho, Antibacterial film formation through iron(III) complexation and oxidation-induced cross-linking of OEG-DOPA, Langmuir, 35, 14465-14472 (2019). 

  26. L. Garcia-Fernandez, J. Cui, C. Serrano, Z. Shafiq, R. A. Gropeanu, V. San Miguel, J. I. Ramos, M. Wang, G. K. Auernhammer, S. Ritz, A. A. Golriz, R. Berger, M. Wagner, and A. del Campo, Antibacterial strategies from the sea: Polymer-bound Cl-catechols for prevention for biofilm formation, Adv. Mater., 25, 529-533 (2013). 

  27. K. Hirota, K. Murakami, K. Nemoto, Y. Miyake, Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms, FEMS Microbiol. Lett., 248, 37-45 (2005). 

  28. A. L. Lewis, Z. L. Cumming, H. H. Goreish, L. C. Kirkwood, L. A. Tolhurst, and P. W. Stratford, Crosslinkable coatings from phosphorylcholine-based polymers, Biomaterials, 22, 99-111 (2001). 

  29. T. Yoshioka, K. Tsuru, S. Hayakawa, and A. Osaka, Preparation of alginic acid layers on stainless-steel substrates for biomedical applications, Biomaterials, 24, 2889-2894 (2003). 

  30. Y. Jeong, L. T. Thuy, S. H. Ki, S. Ko, S. Kim, W. K. Cho, J. S. Choi, and S. M. Kang, Multipurpose antifouling coating of solid surfaces with the marine-derived polymer fucoidan, Macromol. Biosci., 1800137 (2018). 

  31. B. Kaczmarek, Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview, Materials, 13, 3224 (2020). 

  32. J. H. Park, S. Choi, H. C. Moon, H. Seo, J. Y. Kim, S.-P. Hong, B. S. Lee, E. Kang, J. Lee, D. H. Ryu, and I. S. Choi, Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: Applications to shoe insoles and fruits, Sci. Rep., 7, 6980 (2017). 

  33. B.-O. Jung, Y.-M. Lee, J.-J. Kim, Y.-J. Choi, K.-J. Jung, J.-J. Kim, and S.-J. Chung, The antimicrobial effect of water soluble chitosan, J. Ind. Eng. Chem., 10, 660-665 (1999). 

  34. C. H. Kim, Y. S. Choi, and K. S. Choi, Antibacterial activity by chitosan derivatives with quaternary ammonium salt, J. Ind. Eng. Chem., 7, 1020-1026 (1996). 

  35. H. Tan, R. Ma, C. Lin, Z. Liu, and T. Tang, Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics, Int. J. Mol. Sci., 14, 1854-1869 (2013). 

  36. M. Kumorek, I. M. Minisy, T. Krunclova, M. Vorsilakova, K. Venclikova, E. M. Chanova, O. Janouskova, and D. Kubies, pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid, Mater. Sci. Eng. C, 109, 110493 (2020). 

  37. Y. F. Cheng, Y. H. Mei, G. Sathishkumar, Z. S. Lu, C. M. Li, F. Wang, Q. Y. Xia, L. Q. Xu, Tannic acid-assisted deposition of silk sericin on the titanium surfaces for antifouling application, Colloid Interface Sci. Commun., 35, 100241 (2020). 

  38. J. Y. Kim, H.-J. Park, and J. Yoon, Antimicrobial activity and mechanism for various nanoparticles, Appl. Chem. Eng., 21, 366-371 (2010). 

  39. K. Choi, T. Kim, S. Yun, J. Yoon, and J.-C. Lee, Development of antimicrobial N-halamine containing alkyl chain for paint, Appl. Chem. Eng., 22, 45-47 (2011). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로