최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기공업화학 = Applied chemistry for engineering, v.32 no.4, 2021년, pp.417 - 422
유지선 (강원대학교 소방방재연구센터) , 전남 (한국건설생활환경시험연구원) , 정영진 (강원대학교 소방방재공학과)
In this study, poly isocyanurate foam (PIR), poly urethane foam (PUR), and phenol foam (PF) of organic insulation materials were selected, and investigated using a cone calorimeter, as per ISO 5660-1. Standard materials (PMMA) were used to standardize the fire hazard assessment, and the fire risk wa...
E. Asimakopoulou, J. Zhang, M. McKEE, K. Wieczorek, A. Krawczyk, M. Andolfo, M. Scatto, M. Sisani, and M. Bastianini, Assessment of fire behaviour of polyisocyanurate (PIR) insulation foam enhanced with lamellar inorganic smart fillers, J. Phys.: Conf. Ser., 1107, 1-7 (2018).
J. P. Hidalgo, J. L. Torero, and S. Welch, Fire performance of charring closed-cell polymeric insulation materials: Polyisocyanurate and phenolic foam, Fire Mater., 42, 358-373 (2018).
J. W. Park and N. W. Cho, A study on the cone calorimeter evaluation method of sandwich panels, Fire Sci. Eng., 31, 74-82 (2017).
L. Hu, J. A. Mike, and B. Merci, Special issue on fire safety of high-rise buildings, Fire Technol., 53, 1-3 (2017).
B. Aydogan and N. Usta, Cone calorimeter evaluation on fire resistance of rigid polyurethane foams filled with nanoclay/intumescent flame retardant materials, Res. Eng. Struct. Mater., 4, 71-77 (2018).
P. Pater, T. R. Hull, A. A. Stec, and R. E. Lyon, Influence of physical properties on polymer flammability in the cone calorimeter, Polym. Adv. Technol., 22, 1100-1107 (2011).
A. Tewarson, Generation of heat and chemical compounds in fires, SFPE Handbook of Fire Protection Engineering, 3rd. ed., 83-161, National Fire Protection Association, Quincy, Massachusetts (2002).
T. J. Ohlemiller, J. R. Shields, K. M. Butler, B. L. Collins, and M. D. Seck, Exploring the role of polymer melt viscosity in melt flow and flammability behavior, New Developments and Key Market Trends in Flame Retardancy, Proceedings of the Fall Conference of the Fire Retardant Chemicals Assoc. Oct. 15-18, Ponte Vedra, FL, USA, 1-28 (2000).
Q. Y. Xie, H. P. Zhang, and L. Xu, Large-scale experimental study on the effects of flooring materials on combustion behavior of thermoplastics, J. Macromol. Sci. A, 45, 529-533 (2008).
T. Zhang, X. Zhou, and L. Yang, Experimental study of fire hazards of thermal-insulation material in diesel locomotive: Aluminum-polyurethane, Materials, 9, 1-17 (2016).
H. Vahabi, B. K. Kandola, and M. R. Saeb, Flame retardancy index for thermoplastic composites, Polymers, 11, 1-10 (2019).
R. Sonnier, A. Viretto, L. Dumazert, and B. Gallard, A method to study the two-step decomposition of binary blends in cone calorimeter, Combust. Flame, 169, 1-10 (2016).
V. Babrauskas, The cone calorimeter - A versatile bench-scale tool for the evaluation of fire properties, In S. J. Grayson and D. A. Smith (eds.), New Technology to Reduce Fire Losses and Costs, Elsevier Applied Science Publishers, London, UK, 78-87 (1986).
M. M. Hirschler, Fire performance of organic polymers, Thermal Decomposition and Chemical Composition, ACS Symp Series, Washington DC, 797, 293-306 (2001).
ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
Y. J. Chung and E. Jin, Rating evaluation of fire risk for combustible materials in case of fire, Appl. Chem. Eng., 32, 75-82 (2021).
A. A. Stec and T. R. Hull, Assessment of the fire toxicity of building insulation materials, Energ. Buildings, 43, 498-506 (2011).
P. Gahlen, S. Frobel, A. Karbach, D. Gabriel, and M. Stommel, Experimental multi-scale approach to determine the local mechanical properties of foam base material in polyisocyanurate metal panels, Polym. Test., 93, 1-11 (2021).
K. Chen, C. Tian, S. Liang, X. Zhao, and X. Wang, Effect of stoichiometry on the thermal stability and flame retardation of polyisocyanurate foams modified with epoxy resin, Polym. Degrad. Stabil., 150, 105-113 (2018).
M. Kuranska, U. Cabulis, M. Auguscik, A. Prociak, J. Ryszkowska, and M. Kirpluks, Bio-based polyurethane-polyisocyanurate composites with an intumescent flame retardant, Polym. Degrad. Stabil., 127, 11-19 (2016).
M. Pfundstein, Insulating Materials: Principles, Materials, Applications, De Gruyter GmbH (2013).
X. Liu, J. Hao, and S. Gaan, Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials, RSC Adv., 6, 74742-74756 (2016).
W. Xu, G. J. Wang, and X. R. Zheng, Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants, Polym. Degrad. Stab., 111, 142-150 (2015).
J. Troizsch, Plastics Flammability Handbook 3E: Principles, Regulations, Testing, and Approval, Hanser Publications (2004).
Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.