$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Effect of electric field on primary dark pulses in SPADs for advanced radiation detection applications 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.53 no.2, 2021년, pp.618 - 625  

Lim, Kyung Taek (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) ,  Kim, Hyoungtaek (Korea Atomic Energy Research Institute) ,  Kim, Jinhwan (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) ,  Cho, Gyuseong (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

In this paper, the single-photon avalanche diodes (SPADs) featuring three different p-well implantation doses (∅p-well) of 5.0 × 1012, 4.0 × 1012, and 3.0 × 1012 atoms/cm2 under the identical device layouts were fabricated and characterized to evaluate the effects of fiel...

Keyword

참고문헌 (39)

  1. D. Renker, E. Lorenz, Advances in solid state photon detectors, J. Instrum. 4 (2009) P04004. 

  2. F. Acerbi, A. Ferri, A. Gola, M. Cazzanelli, L. Pavesi, N. Zorzi, C. Piemonte, Characterization of single-photon time resolution: from single SPAD to silicon photomultiplier, IEEE Trans. Nucl. Sci. 61 (2014) 2678-2686. 

  3. F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, C. Piemonte, Silicon photo-multipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK, Nucl. Instrum. Methods Phys. Res. 912 (2018) 309-314. 

  4. P. Buzhan, A. Karakash, Y. Teverovskiy, Silicon Photomultiplier and CsI(Tl) scintillator in application to portable H * (10) dosimeter, Nucl. Instrum. Methods Phys. Res. 912 (2018) 245-247. 

  5. G. Erika, Silicon photomultipliers for high energy physics detectors, J. Instrum. 6 (2011) C10003. 

  6. S. Gundacker, F. Acerbi, E. Auffray, A. Ferri, A. Gola, M.V. Nemallapudi, G. Paternoster, C. Piemonte, P. Lecoq, State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs, J. Instrum. 11 (2016) P08008. P08008. 

  7. R. Agishev, A. Comeron, J. Bach, A. Rodriguez, M. Sicard, J. Riu, S. Royo, Lidar with SiPM: some capabilities and limitations in real environment, Optic Laser. Technol. 49 (2013) 86-90. 

  8. G. Ambrosi, M. Ambrosio, C. Aramo, E. Bissaldi, A. Boiano, A. Bonavolonta, C. de Lisio, L. Di Venere, E. Fiandrini, N. Giglietto, F. Giordano, M. Ionica, V. Masone, R. Paoletti, V. Postolache, D. Simone, V. Vagelli, M. Valentino, Development of a SiPM based camera for Cherenkov telescope array, Nucl. Part.Phys. Proc. 291-293 (2017) 55-58. 

  9. C. Barker, T. Zhu, L. Rolison, S. Kiff, K. Jordan, A. Enqvist, Pulse shape analysis and discrimination for silicon-photomultipliers in helium-4 gas scintillation neutron detector, EPJ Web Conf. 170 (2018), 07002. 

  10. D.J. Herbert, V. Saveliev, N. Belcari, N.D. Ascenzo, A.D. Guerra, A. Golovin, First results of scintillator readout with silicon photomultiplier, IEEE Trans. Nucl. Sci. 53 (2006) 389-394. 

  11. M. Stipcevic, D. Wang, R. Ursin, Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode, J. Lightwave Technol. 31 (2013) 3591-3596. 

  12. G. Collazuol, M.G. Bisogni, S. Marcatili, C. Piemonte, A. Del Guerra, Studies of silicon photomultipliers at cryogenic temperatures, Nucl. Instrum. Methods Phys. Res. 628 (2011) 389-392. 

  13. R. Pagano, G. Valvo, D. Sanfilippo, S. Libertino, D. Corso, P.G. Fallica, S. Lombardo, Silicon photomultiplier device architecture with dark current improved to the ultimate physical limit, Appl. Phys. Lett. 102 (2013) 183502. 

  14. S.M. Sze, K. Ng, Physics of Semiconductor Devices, third ed., John Wiley & Sons, 2007. 

  15. R.H. Haitz, Mechanisms contributing to the noise pulse rate of avalanche diodes, J. Appl. Phys. 36 (1965) 3123-3131. 

  16. P.A. Martin, B. Streetman, K. Hess, Electric field enhanced emission from non-Coulombic traps in semiconductors, J. Appl. Phys. 52 (1981) 7409-7415. 

  17. R. McIntyre, Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron. Dev. 13 (1966) 164-168. 

  18. R. Pagano, S. Libertino, D. Corso, S. Lombardo, G. Valvo, D. Sanfilippo, G. Condorelli, M. Mazzillo, A. Piana, B. Carbone, Silicon photomultiplier: technology improvement and performance, J. Sys. Mea. 6 (2013) 124-136. 

  19. R. Pagano, S. Libertino, D. Corso, S. Lombardo, G. Valvo, D. Sanfilippo, G. Condorelli, M. Mazzillo, A. Piana, B. Carbone, G. Fallica, Improvement of the diffusive component of dark current in SiPM pixels, Sensordevices (2012) 2012. 

  20. S. Cova, A. Lacaita, G. Ripamonti, Trapping phenomena in avalanche photo-diodes on nanosecond scale, IEEE Electron. Device Lett. 12 (1991) 685-687. 

  21. G.A.M. Hurkx, D.B.M. Klaassen, M.P.G. Knuvers, A new recombination model for device simulation including tunneling, IEEE Trans. Electron. Dev. 39 (1992) 331-338. 

  22. W.J. Kindt, H.W.V. Zeijl, Modelling and fabrication of Geiger mode avalanche photodiodes, IEEE Trans. Nucl. Sci. 45 (1998) 715-719. 

  23. K.T. Lim, H. Kim, M. Kim, Y. Kim, C. Lee, G. Cho, Photon-number resolving capability in SiPMs with electric field variation for radiation detection applications, Radiat. Phys. Chem. 155 (2019) 101-106. 

  24. C. Piemonte, R. Battiston, M. Boscardin, G.F.D. Betta, A.D. Guerra, N. Dinu, A. Pozza, N. Zorzi, Characterization of the first prototypes of silicon photo-multiplier fabricated at ITC-irst, IEEE Trans. Nucl. Sci. 54 (2007) 236-244. 

  25. F. Acerbi, S. Gundacker, Understanding and simulating SiPMs, Nucl. Instrum. Methods Phys. Res. 926 (2019) 16-35. 

  26. V. Chmill, E. Garutti, R. Klanner, M. Nitschke, J. Schwandt, Study of the breakdown voltage of SiPMs, Nucl. Instrum. Methods Phys. Res. 845 (2017) 56-59. 

  27. C.Y. Chang, S.S. Chiu, L.P. Hsu, Temperature dependence of breakdown voltage in silicon abrupt p-n junctions, IEEE Trans. Electron. Dev. 18 (1971) 391-393. 

  28. N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, N. Zorzi, Experimental and TCAD study of breakdown voltage temperature behavior in n+/p SiPMs, IEEE Trans. Nucl. Sci. 58 (2011) 1233-1240. 

  29. X. Li, C. Lockhart, T.K. Lewellen, R.S. Miyaoka, Study of PET detector performance with varying SiPM parameters and readout schemes, IEEE Trans. Nucl. Sci. 58 (2011) 590-596. 

  30. C. Piemonte, A. Gola, Overview on the main parameters and technology of modern Silicon Photomultipliers, Nucl. Instrum. Methods Phys. Res. 926 (2019) 2-15. 

  31. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, S. Cova, Progress in silicon single-photon avalanche diodes, IEEE J. Sel. Top. Quant. Electron. 13 (2007) 852-862. 

  32. M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, S. Cova, Large-area Low-Jitter Silicon Single Photon Avalanche Diodes, SPIE, 2008. 

  33. G.A.M. Hurkx, H.C.d. Graaff, W.J. Kloosterman, M.P.G. Knuvers, A new analytical diode model including tunneling and avalanche breakdown, IEEE Trans. Electron. Dev. 39 (1992) 2090-2098. 

  34. A.N. Otte, T. Nguyen, J. Stansbury, Locating the avalanche structure and the origin of breakdown generating charge carriers in silicon photomultipliers by using the bias dependent breakdown probability, Nucl. Instrum. Methods Phys. Res. 916 (2019) 283-289. 

  35. A. Gola, F. Acerbi, M. Capasso, M. Marcante, A. Mazzi, G. Paternoster, C. Piemonte, V. Regazzoni, N. Zorzi, NUV-sensitive silicon photomultiplier technologies developed at fondazione bruno kessler, Sensors 19 (2019) 308. 

  36. A.N. Otte, D. Garcia, T. Nguyen, D. Purushotham, Characterization of three high efficiency and blue sensitive silicon photomultipliers, Nucl. Instrum. Methods Phys. Res. 846 (2017) 106-125. 

  37. G. Zappal a, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, N. Zorzi, C. Piemonte, Study of the photo-detection efficiency of FBK High-Density silicon photomultipliers, J. Instrum. 11 (2016) P11010. 

  38. C. Piemonte, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, G. Zappala, N. Zorzi, Performance of NUV-HD silicon photomultiplier technology, IEEE Trans. Electron. Dev. 63 (2016) 1111-1116. 

  39. I. Ostrovskiy, F. Retiere, D. Auty, J. Dalmasson, T. Didberidze, R. DeVoe, G. Gratta, L. Huth, L. James, L. Lupin-Jimenez, N. Ohmart, A. Piepke, Characterization of silicon photomultipliers for nEXO, IEEE Trans. Nucl. Sci. 62 (2015) 1825-1836. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로