$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Dissolution behavior of SrO into molten LiCl for heat reduction in used nuclear fuel 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.53 no.5, 2021년, pp.1534 - 1539  

Kang, Dokyu (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ,  Amphlett, James T.M. (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ,  Choi, Eun-Young (Korea Atomic Energy Research Institute) ,  Bae, Sang-Eun (Korea Atomic Energy Research Institute) ,  Choi, Sungyeol (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

This study reports on the dissolution behavior of SrO in LiCl at varying SrO concentrations from low concentrations to excess. The amount of SrO dissolved in the molten salt and the species present upon cooling were determined. The thermal behavior of LiCl containing various concentrations of SrO wa...

Keyword

참고문헌 (27)

  1. S. Choi, W. Il Ko, Dynamic assessments on high-level waste and low- and intermediate-level waste generation from open and closed nuclear fuel cycles in Republic of Korea, J. Nucl. Sci. Technol. 51 (2014) 1141-1153, https://doi.org/10.1080/00223131.2014.905804. 

  2. S. Choi, H.O. Nam, W. Il Ko, Environmental life cycle risk modeling of nuclear waste recycling systems, Energy 112 (2016) 836-851, https://doi.org/10.1016/j.energy.2016.06.127. 

  3. K. Ikonen, Thermal Analyses of Spent Nuclear Fuel Repository Thermal Analyses of Spent Nuclear Fuel Repository, 2003. 

  4. H.S. Jung, S. Choi, I.S. Hwang, M.-J. Song, Environmental assessment of advanced partitioning, transmutation, and disposal based on long-term risk-informed regulation: PyroGreen, Prog. Nucl. Energy 58 (2012) 27-38, https://doi.org/10.1016/j.pnucene.2012.02.003. 

  5. R. Gao, S. Choi, Y. Zhou, W. Il Ko, Performance modeling and analysis of spent nuclear fuel recycling, Int. J. Energy Res. 39 (2015) 1981-1993, https://doi.org/10.1002/er.3424. 

  6. R.A. Wigeland, T.H. Bauer, T.H. Fanning, E.E. Morris, Separations and transmutation criteria to improve utilization of a geologic repository, Nucl. Technol. 154 (2006) 95-106, https://doi.org/10.13182/NT06-3. 

  7. A.N. Williams, M. Pack, S. Phongikaroon, Separation of strontium and cesium from ternary and quaternary lithium chloride-potassium chloride salts via melt crystallization, Nucl. Eng. Technol. 47 (2015) 867-874, https://doi.org/10.1016/j.net.2015.08.006. 

  8. E.J. Karell, R.D. Pierce, T.P. Mulcahey, Treatment OF oxide spent fuel using the lithium reduction process, Proc. Am. Nucl. Soc. Meet. 53 (1996) 1689-1699, https://doi.org/10.1017/CBO9781107415324.004. 

  9. E.Y. Choi, S.M. Jeong, Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology, Prog. Nat. Sci. Mater. Int. 25 (2015) 572-582, https://doi.org/10.1016/j.pnsc.2015.11.001. 

  10. S. Herrmann, S. Li, M. Simpson, Electrolytic reduction of spent light water reactor fuel bench-scale experiment results, J. Nucl. Sci. Technol. 44 (2007) 361-367, https://doi.org/10.1080/18811248.2007.9711295. 

  11. W. Il Ko, H.H. Lee, S. Choi, S.-K. Kim, B.H. Park, H.J. Lee, I.T. Kim, H.S. Lee, Preliminary conceptual design and cost estimation for Korea advanced pyroprocessing facility plus (KAPF+), Nucl. Eng. Des. 277 (2014) 212-224, https://doi.org/10.1016/j.nucengdes.2014.06.033. 

  12. V.L. Cherginets, T.P. Rebrova, V.A. Naumenko, On metal oxide solubilities in some molten alkali metal bromides at T 973 K, J. Chem. Thermodyn. 74 (2014) 216-220, https://doi.org/10.1016/j.jct.2014.02.001. 

  13. I.N.I. Solvents, Chapter 3 equilibria in "solid oxide-ionic melt" systems, compr, Chem. Kinet 41 (2005) 229-345, https://doi.org/10.1016/S0069-8040(05)80006-8. 

  14. J. Jeon, J. Yeon, Y. Cho, I. Choi, W. Kim, Determination of oxide ion activity in molten LiCl using oxide ion electrode, Proc. Korean Nucl. Autumn Meet 2002 (2002). 

  15. D.H. Kim, S.E. Bae, J.Y. Kim, T.H. Park, Y.J. Park, K. Song, Solubility measurement of Li2O in LiCl molten salt for electro-reduction process, Asian J. Chem. 25 (2013) 7055-7057, https://doi.org/10.14233/ajchem.2013.18. 

  16. Y. Sakamura, Solubility of Li[sub 2]O in molten LiCleMCl[sub x] (MNa, K, Cs, Ca, Sr, or Ba) binary systems, J. Electrochem. Soc. 157 (2010) E135, https://doi.org/10.1149/1.3456631. 

  17. A.V. Volkovich, M.V. Solodkova, Z.V. Zhukova, M.V. Sigailov, D.P. Vent, Interaction of strontium oxide with Sr-Cl2-MCl melts, Russ. Metall. 2011 (2011) 122-126, https://doi.org/10.1134/S0036029511020157. 

  18. S.M. Jeong, B.H. Park, J.M. Hur, C.S. Seo, H. Lee, Ki-Chan Song, An experimental study on an electrochemical reduction of an oxide mixture in the advanced spent-fuel conditioning process, Nucl. Eng. Technol. 42 (2010) 183-192, https://doi.org/10.5516/NET.2010.42.2.183. 

  19. S.D. Herrmann, S.X. Li, M.F. Simpson, S. Phongikaroon, Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products, Separ. Sci. Technol. 41 (2006) 1965-1983, https://doi.org/10.1080/01496390600745602. 

  20. S.D. Herrmann, S.X. Li, Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining, Nucl. Technol. 171 (2010) 247-265, https://doi.org/10.13182/NT171-247. 

  21. W. Park, E.Y. Choi, S.W. Kim, S.C. Jeon, Y.H. Cho, J.M. Hur, Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li2O-LiCl molten salt, J. Nucl. Mater. 477 (2016) 59-66, https://doi.org/10.1016/j.jnucmat.2016.04.058. 

  22. H. Lee, G. Il Park, J.W. Lee, K.H. Kang, J.M. Hur, J.G. Kim, S. Paek, I.T. Kim, I.J. Cho, Current status of pyroprocessing development at KAERI, Sci. Technol. Nucl. Install. 2013 (2013), https://doi.org/10.1155/2013/343492. 

  23. E.V. Nikolaeva, I.D. Zakiryanova, I.V. Korzun, A.L. Bovet, B.D. Antonov, Interaction between barium oxide and barium containing chloride melt, Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci. 70 (2015) 325-331, https://doi.org/10.1515/zna-2014-0370. 

  24. E.V. Nikolaeva, I.D. Zakiryanova, A.L. Bovet, I.V. Korzun, On barium oxide solubility in barium-containing chloride melts, Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci. 71 (2016) 731-734, https://doi.org/10.1515/zna-2016-0163. 

  25. H.S. Lee, G.H. Oh, Y.S. Lee, I.T. Kim, E.H. Kim, J.H. Lee, Concentrations of CsCl and SrCl2 from a simulated LiCl salt waste generated by pyroprocessing by using czochralski method, J. Nucl. Sci. Technol. 46 (2009) 392-397, https://doi.org/10.3327/jnst.46.392. 

  26. J.-M. Hur, S.M. Jeong, H. Lee, Underpotential deposition of Li in a molten LiCleLi2O electrolyte for the electrochemical reduction of U from uranium oxides, Electrochem. Commun. 12 (2010) 706-709, https://doi.org/10.1016/j.elecom.2010.03.012. 

  27. M.K. Jeon, S.-W. Kim, S.-K. Lee, E.-Y. Choi, Thermodynamic Calculations on the Chemical Behavior of SrO During Electrolytic Oxide Reduction, J. Nucl. Fuel Cycle Waste Technol. 18 (2020) 415-420. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로