$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Flow-based seismic resilience assessment of urban water transmission networks

Structural engineering and mechanics : An international journal, v.79 no.4, 2021년, pp.517 - 529  

Yoon, Sungsik (Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign) ,  Lee, Young-Joo (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ,  Jung, Hyung-Jo (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

In this study, a new framework of seismic resilience estimation for urban water transmission networks was developed. The proposed resilience estimation model consists of three phases: input earthquake generation, hydraulic analysis, and recovery of network facilities. In the earthquake generation ph...

Keyword

참고문헌 (49)

  1. ALA (Ameriean Lifeline Alliance) (2001), Guidelines for the Design of Buried Steel Pipe, American Society of Civil Engineers. 

  2. Alipour, A. and Shafei, B. (2016), "Seismic resilience of transportation networks with deteriorating components", J. Struct. Eng., 142(8), C4015015. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001399. 

  3. Ansari, M., Safiey, A. and Abbasi, M. (2020), "Fragility based performance evaluation of mid rise reinforced concrete frames in near field and far field earthquakes", Struct. Eng. Mech., 76(6), 751-763. http://doi.org/10.12989/sem.2020.76.6.751. 

  4. Bonneau, A.L. and O'Rourke, T.D. (2009), "Water supply performance during earthquakes and extreme events", MCEER Technical Report-MCEER-09-0003. 

  5. Brink, S.A., Davidson, R.A. and Tabucchi, T.H.P. (2012), "Strategies to reduce durations of post-earthquake water service interruptions in Los Angeles", Struct. Infrastr. Eng., 8(2), 199-210. https://doi.org/10.1080/15732470903517975. 

  6. Chen, W.W., Shih, B.J., Wu, C.W. and Chen, Y.C. (2000), "Natural gas pipeline system damages in the Ji-Ji earthquake (The City of Nantou)", Proceedings of the Sixth International Conference on Seismic Zonation, Palm Springs, Riviera Resort, CA. 

  7. Cimellaro, G.P., Reinhorn, A.M. and Bruneau, M. (2010), "Seismic resilience of a hospital system", Struct. Infrastr. Eng., 6(1-2), 127-144. https://doi.org/10.1080/15732470802663847. 

  8. Cimellaro, G.P., Tinebra, A., Renschler, C. and Fragiadakis, M. (2016), "New resilience index for urban water distribution networks", J. Struct. Eng., 142(8), C4015014. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001433. 

  9. Cullinane, M.J., Lansey, K.E. and Mays, L.W. (1992), "Optimization-availability-based design of water-distribution networks", J. Hydraul. Eng., 118(3), 420-441. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:3(420). 

  10. DesRoches, R., Comerio, M., Eberhard, M., Mooney, W. and Rix, G.J. (2011), "Overview of the 2010 Haiti earthquake", Earthq. Spectra, 27(S1), S1-S21. https://doi.org/10.1193/1.3630129. 

  11. Eliades, D. and Kyriakou, M (2009), EPANET MATLAB Toolkit, University of Cyprus, Republic of Cyprus. 

  12. Farahmandfar, Z. and Piratla, K.R. (2017), "Comparative evaluation of topological and flow-based seismic resilience metrics for rehabilitation of water pipeline systems", J. Pipeline Syst. Eng. Pract., 9(1), 04017027. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000293. 

  13. FEMA (2003), Multi-Hazard Loss Estimation Methodology Earthquake Model, HAZUS-MH MR3 Technical Manual, Department of Homeland Security, Federal Emergency Management Agency, Washington, DC, USA. 

  14. Giovinazzi, S., Wilson, T., Davis, C., Bristow, D., Gallagher, M., Schofield, A., Villemure, M., Eidinger, J. and Tang, A. (2011), "Lifelines performance and management following the 22 February 2011 Christchurch earthquake", Highlights of Resilience, New Zealand. 

  15. Goda, K. and Hong, H.P. (2008), "Spatial correlation of peak ground motions and response spectra", Bull. Seismol. Soc. Am., 98(1), 354-365. https://doi.org/10.1785/0120070078. 

  16. Gupta, R. and Bhave, P.R. (1996), "Comparison of methods for predicting deficient-network performance", J. Water Resour. Plan. Manage., 122(3), 214-217. https://doi.org/10.1061/(ASCE)0733-9496(1996)122:3(214). 

  17. Han, J.S. (2020), "Comparison of model order reductions using Krylov and modal vectors for transient analysis under seismic loading", Struct. Eng. Mech., 76(5), 643-651. http://doi.org/10.12989/sem.2020.76.5.643. 

  18. Hollnagel, E., Woods, D.D. and Leveson, N. (2006), Resilience Engineering: Concepts and Precepts, Ashgate Publishing, Ltd. 

  19. Hosseini, S., Barker, K. and Ramirez-Marquez, J.E. (2016), "A review of definitions and measures of system resilience", Reliab. Eng. Syst. Saf., 145, 47-61. https://doi.org/10.1016/j.ress.2015.08.006. 

  20. Hwang, H.H., Lin, H. and Shinozuka, M. (1998), "Seismic performance assessment of water delivery systems", J. Infrastr. Syst., 4(3), 118-125. https://doi.org/10.1061/(ASCE)1076-0342(1998)4:3(118). 

  21. Isoyama, R., Ishida, E., Yune, K. and Shirozu, T. (2000), "Seismic damage estimation procedure for water supply pipelines", Proceedings of the 12th World Conference on Earthquake Engineering (WCEE), Auckland, New Zealand. 

  22. Jeon, S.S. and O'Rourke, T.D. (2005), "Northridge earthquake effects on pipelines and residential buildings", Bull. Seismol. Soc. Am., 95(1), 294-318. https://doi.org/10.1785/0120040020. 

  23. Kafka, A.L. and Levin, S.Z. (2000), "Does the spatial distribution of smaller earthquakes delineate areas where larger earthquakes are likely to occur?", Bull. Seismol. Soc. Am., 90(3), 724-738. https://doi.org/10.1785/0119990017. 

  24. Kammouh, O., Cimellaro, G.P. and Mahin, S.A. (2018), "Downtime estimation and analysis of lifelines after an earthquake", Eng. Struct., 173, 393-403. https://doi.org/10.1016/j.engstruct.2018.06.093. 

  25. Kang, W.H., Lee, Y.J. and Zhang, C. (2017), "Computer-aided analysis of flow in water pipe networks after a seismic event", Math. Prob. Eng., 2017, Article ID 2017046. https://doi.org/10.1155/2017/2017046. 

  26. Kashani, M.G., Hosseini, M. and Aziminejad, A. (2016), "Reliability evaluation of water distribution network considering mechanical characteristics using informational entropy", Struct. Eng. Mech., 58(1), 21-38. http://doi.org/10.12989/sem.2016.58.1.021. 

  27. Kawashima, K., Aizawa, K. and Takahashi, K. (1984), "Attenuation of peak ground motion and absolute acceleration response spectra", Proceedings, Eighth World Conference on Earthquake Engineering. 

  28. Lee, D.H., Kim, B.H., Lee, H. and Kong, J.S. (2009), "Seismic behavior of a buried gas pipeline under earthquake excitations", Eng. Struct., 31(5), 1011-1023. https://doi.org/10.1016/j.engstruct.2008.12.012. 

  29. Lim, H.W. and Song, J. (2012), "Efficient risk assessment of lifeline networks under spatially correlated ground motions using selective recursive decomposition algorithm", Earthq. Eng. Struct. Dyn., 41(13), 1861-1882. https://doi.org/10.1002/eqe.2162. 

  30. Okumura, T. and Shinozuka, M. (1991), "Serviceability analysis of Memphis water delivery system", Proceedings of 3rd US Conference on Lifeline Earthquake Engineering, Los Angeles, California. 

  31. PAHO (2002), Emergencies and Disasters in Drinking Water Supply and Sewage Systems: Guidelines for Effective Response. 

  32. Piratla, K.R. (2016), "Investigation of sustainable and resilient design alternatives for water distribution networks", Urban Water J., 13(4), 412-425. https://doi.org/10.1080/1573062X.2014.994001. 

  33. Puchovsky, M.T. (1999), Automatic Sprinkler Systems Handbook. National Fire Protection Association (NFPA). 

  34. Scawthorn, C. and Porter, K. (2011), "Reconnaissance report: aspects of the 11 March 2011 eastern Japan earthquake and tsunami", SPA Risk LLC, Denver, USA. 

  35. Shafieezadeh, A. and Burden, L.I. (2014), "Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports", Reliab. Eng. Syst. Saf., 132, 207-219. https://doi.org/10.1016/j.ress.2014.07.021. 

  36. Shufeng, L., Di, Z., Qingning, L., Huajing, Z., Jiaolei, Z. and Dawei, Y. (2020), "Research on prefabricated concrete beamcolumn joint with high strength bolt-end plate", Struct. Eng. Mech., 74(3), 395-406. https://doi.org/10.12989/sem.2020.74.3.395. 

  37. Tang, A.K., Eng, P., Eng, C. and Asce, F. (2011), "Lifelines performance of the Mw 8.8 off shore Biobio, Chile Earthquake", Procedia Eng., 14, 922-930. https://doi.org/10.1016/j.proeng.2011.07.116. 

  38. Wagner, J.M., Shamir, U. and Marks, D.H. (1988), "Water distribution reliability: Simulation methods", J. Water Resour. Plan. Manage., 114(3), 276-294. https://doi.org/doi:10.1061/(ASCE)0733-9496(1988)114:3(276). 

  39. Wang, M. and Takada, T. (2005), "Macrospatial correlation model of seismic ground motions", Earthq. Spectra, 21(4), 1137-1156. https://doi.org/10.1193/1.2083887. 

  40. Wang, Y., Au, S.K. and Fu, Q. (2010), "Seismic risk assessment and mitigation of water supply systems", Earthq. Spectra, 26(1), 257-274. https://doi.org/10.1193/1.3276900. 

  41. Wang, Y. and O'Rourke, T.D. (2006), "Seismic performance evaluation of water supply systems", MCEER Technical Report-MCEER-08-0015. 

  42. Weerheijm, J., Mediavilla, J. and Van Doormaal, J.C.A.M. (2009), "Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse", Struct. Eng. Mech., 32(2), 193-212. https://doi.org/10.12989/sem.2009.32.2.193. 

  43. Yazdani, A., Otoo, R.A. and Jeffrey, P. (2011), "Resilience enhancing expansion strategies for water distribution systems: A network theory approach", Environ. Model. Softw., 26(12), 1574-1582. https://doi.org/10.1016/j.envsoft.2011.07.016. 

  44. Yoon, S., Lee, Y.J. and Jung, H.J. (2018), "A comprehensive framework for seismic risk assessment of urban water transmission networks", Int. J. Disast. Risk Reduct., 31, 983-994. https://doi.org/10.1016/j.ijdrr.2018.09.002. 

  45. Yoon, S., Lee, D.H. and Jung, H.J. (2019), "Seismic fragility analysis of a buried pipeline structure considering uncertainty of soil parameters", Int. J. Press. Ves. Pip., 175, 103932. https://doi.org/10.1016/j.ijpvp.2019.103932. 

  46. Yoon, S., Lee, Y.J. and Jung, H.J. (2020a), "A comprehensive approach to flow-based seismic risk analysis of water transmission network", Struct. Eng. Mech., 73(3), 339-351. https://doi.org/10.12989/sem.2020.73.3.339. 

  47. Yoon, S., Lee, Y.J. and Jung, H.J. (2020b), "Flow-based optimal system design of urban water transmission network under seismic conditions", Water Resour. Manage., 34(6), 1971-1990. https://doi.org/10.1007/s11269-020-02541-4. 

  48. Yoon, S., Lee, Y.J. and Jung, H.J. (2021), "Flow-based seismic risk assessment of a water transmission network employing probabilistic seismic hazard analysis", Nat. Hazard., 105(2), 1231-1254. https://doi.org/10.1007/s11069-020-04352-7. 

  49. Zhao, X., Cai, H., Chen, Z., Gong, H. and Feng, Q. (2016), "Assessing urban lifeline systems immediately after seismic disaster based on emergency resilience", Struct. Infrastr. Eng., 12(12), 1634-1649. https://doi.org/10.1080/15732479.2016.1157609. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로