$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Analyzing the Evolution of Summer Thermal Anomalies in Busan Using Remote Sensing and Spatial Statistical Tool 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.37 no.4, 2021년, pp.665 - 685  

Njungwi, Nkwain Wilfred (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ,  Lee, Daeun (College of Environmental and Marine Sciences and Technology, Spatial Information Engineering, Pukyong National University) ,  Kim, Minji (College of Environmental and Marine Sciences and Technology, Spatial Information Engineering, Pukyong National University) ,  Jin, Cheonggil (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ,  Choi, Chuluong (College of Environmental and Marine Sciences and Technology, Spatial Information Engineering, Pukyong National University)

Abstract AI-Helper 아이콘AI-Helper

This study focused on the a 20-year evaluation of the dynamism of critical thermal anomalies in Busan metropolitan area prompted by unusual infrastructural development and demographic growth rate. Archived Landsat thermal data derived-LST was the major input for UTFVI and hot spot analysis (Getis-Or...

주제어

표/그림 (15)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • This study aims to provide a potential leeway for stakeholders in Busan to understand and strategize on sustainable management of summer daytime thermal conditions alongside urbanization in the metropolitan area; via remote sensing and spatial statistical tools. This entails using Landsat thermal data for the month of August 2000, 2007, 2014 and 2020 to retrieve land surface temperature and compute the urban thermal field variance index (UTFVI); in order to understand the spatiotemporal evolution of the surface urban heat island effect. Besides, to ascertain the results by performing a hot spots analysis (Getis-Ord Gi*), such as to elucidate the genesis and spatial distribution of thermal anomalies over these years.

이론/모형

  • The derived reflectance is used to calculate the NDVI (Normalized Difference Vegetation Index) required to evaluate the proportion of vegetation and finally determine the emissivity.
본문요약 정보가 도움이 되었나요?

참고문헌 (86)

  1. Ahmed Memon, R., Y.C. Leung, and L. Chunho, 2008. A review on the generation, determination and mitigation of Urban Heat Island, Journal of Environmental Sciences, 20(1): 120-128. 

  2. Alexandridis, T.K., I. Cherif, C. Kalogeropoulos, S. Monachou, K. Eskridge, and N. Silleos, 2013. Rapid error assessment for quantitative estimations from Landsat 7 gap-filled images, Remote Sensing Letters, 4(9): 920-928. 

  3. Allegrini, J., V. Dorer, and J.Carmeliet, 2015. Influence of morphologies on the microclimate in urban neighbourhoods, Journal of Wind Engineering and Industrial Aerodynamics, 144: 108-117. 

  4. Artis, D.A. and W.H. Carnahan, 1982. Survey of emissivity variability in thermography of urban areas, Remote Sensing of Environment, 12(4): 313-329. 

  5. Atkinson, B.W., 2003. Numerical modelling of urban heat-islandintensity, Boundary-Layer Meteorology, 109(3): 285-310. 

  6. Barsi, J.A., K. Lee, G. Kvaran, B.L. Markham, and J.A. Pedelty, 2014. The Spectral Response of the Landsat-8 Operational Land Imager, Remote Sensing, 6(10): 10232-10251. 

  7. Buyantuyev, A. and J. Wu, 2010. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns, Landscape Ecology, 25(1): 17-33. 

  8. Cao, X., A. Bao, X. Chen, and Y. Xia, 2008. Land surface temperature in response to land use/cover change based on remote sensing data in Sangong River, Proc. of Remote Sensing and Modeling of Ecosystems for Sustainability V: OpticalEngineering+Applications, San Diego, CA, Aug. 10-14, vol. 7083, p. 1. 

  9. Chen, J., X. Zhu, J.E. Vogelmann, F. Gao, and S. Jin, 2011. Asimple and effective method for filling gaps in Landsat ETM+ SLC-off images, Remote Sensing of Environment, 115(4): 1053-1064. 

  10. Clauser, C., 2009. Heat transport processes in the earth's crust, Surveys in Geophysics, 30(3): 163-191. 

  11. Comarazamy, D.E., J.E. Gonzalez, and J.C. Luvall, 2015. Quantification and mitigation of long-term impacts of urbanization and climate change in the tropical coastal city of San Juan, Puerto Rico, International Journal of Low-Carbon Technologies, 10(1): 87-97. 

  12. Deilami, K., M. Kamruzzaman, and Y. Liu, 2018. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures, International Journal of Applied Earth Observation and Geoinformation, 67: 30-42. 

  13. Do,W.-G. and J.-G.Jo, 2007. An Analysis of Temporal and Spatial Characteristics of the Urban Heat Island in Busan, The Annual Report of Busan Metropolitan City Institute of Health & Environment, 17(1): 128-135 (in Korean with English abstract). 

  14. Do. W.-G. and W.-S. Jung, 2012. An Analysis on the Variation Trend of Urban Heat Island in Busan Area (2006-2010), Journal of the Environmental Sciences, 21(8): 953-963 (in Korean with English abstract). 

  15. EPA(United States Environmental Protection Agency), 2008. Reducing Urban Heat Island: Compendium of Strategies, United States Environmental Protection Agency, https://www.epa.gov/heatislands/heat-island-compendium, Accessed on Jul. 20, 2021. 

  16. Erell, E., D. Pearlmutter, and T. Williamson, 2011. Urban Microclimate: Designing the Spaces Between Buildings, Earthscan, London, United Kingdom, pp. 23-24. 

  17. Fabrizi, R., S. Bonafoni, and R. Biondi, 2010. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome, Remote Sensing, 2(5): 1400-1415. 

  18. Feranec, J., M. Kopecka, D. Szatmari, J. Holec, P. St'astny, R. Pazur, and H. Bobalova, 2019. A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the MUKLIMO model, Geografie-Sbornik CGS, 124(1): 83-101. 

  19. Foley, J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe, G.C. Daily, H.K. Gibbs, J.H. Helkowski, T. Holloway, E.A. Howard, C.J. Kucharik, C. Monfreda, J.A. Patz, I.C. Prentice, N. Ramankutty, and P.K. Snyder, 2005. Global consequences of land use, Science, 309(5734): 570-574. 

  20. Fonseka, H.P.U., H. Zhang, Y. Sun, H. Su, H. Lin, and Y. Lin, 2019. Urbanization and its impacts on land surface temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to 2016, Remote Sensing, 11(8): 957. 

  21. Frohlich, C. and J. Lean, 2004. Solar radiative output and its variability: evidence and mechanisms, The Astronomy and Astrophysics Review, 12(4): 273-320. 

  22. Griffiths, P., P. Hostert, O. Gruebner, and S. van der Linden, 2010. Mapping megacity growth with multi-sensor data, Remote Sensing of Environment, 114(2): 426-439. 

  23. Grigoras, G. and B. Uritescu, 2018. Spatial Hotspot Analysis of Bucharest's Urban Heat Island (UHI) Using Modis Data, Annals of Valahia University of Targoviste, Geographical Series, 18(1): 14-22. 

  24. Guerri, G., A. Crisci, A. Messeri, L. Congedo, M. Munafo, and M. Morabito, 2021. Thermal summer diurnal hot-spot analysis: The role of local urban features layers, Remote Sensing, 13(3): 538. 

  25. Guha, S., H. Govil, and S. Mukherjee, 2017. Dynamic analysis and ecological evaluation of urban heat islands in Raipur city, India, Journal of Applied Remote Sensing, 11(3): 036020. 

  26. Guha, S., H. Govil,A. Dey, and N. Gill, 2018. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy, European Journal of Remote Sensing, 51(1): 667-678. 

  27. Herbel, I., A.-E. Croitoru, I. Rus, G.V. Harpa, and A.F. Ciupertea, 2016. Detection of atmospheric urban heat island through direct measurements in Cluj-Napoca city, Romania, Hungarian Geographical Bulletin, 65(2): 117-218. 

  28. Howard, L., 1820. The Climate of London: Deduced from Meteorological Observations Made at Different Places in the Neighbourhood of the Metropolis. In Two Volumes, Printed and Sold by W. Phillips, George Yard, Lombard Street, London, UK. 

  29. Huang, H., R. Ooka, and S. Kato, 2005. Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer, Atmospheric Environment, 39(34): 6362-6375. 

  30. Huang, Q., J. Huang, X. Yang, C. Fang, and Y. Liang, 2019. Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using Land Contribution Index: A case study in Wuhan, China, Sustainable Cities and Society, 44: 666-675. 

  31. Jin, M., R.E. Dickinson, and A.M. Vogelmann, 1997. Acomparison of CCM2-BATS skin temperature and surface-air temperature with satellite and surface observations, Journal of Climate, 10(7): 1505-1524. 

  32. Karakus, C.B., 2019. The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in Sivas City Center and Its Surroundings and Assessment of Urban Heat Island, Asia-Pacific Journal of Atmospheric Sciences, 55(4): 669-684. 

  33. Khorchani, M., N. Martin-Hernandez, S.M. Vicente-Serrano, C. Azorin-Molina, M. Garcia, M.A. Dominguez-Duran, F.Reig, M. Pena-Gallardo, and F. Dominguez-Castro, 2018. Average annual and seasonal land surface temperature, spanish peninsular, Journal of Maps, 14(2): 465-475. 

  34. Kim, Y.H. and J.-J. Baik, 2002. Maximum urban heat island intensity in Seoul, Journal of Applied Meteorology, 41(6): 651-659. 

  35. Kim,Y.H. and J.-J. Baik, 2004. Daily maximum urban heat island intensity in large cities of Korea, Theoretical and Applied Climatology, 79(3-4): 151-164. 

  36. Kim, H.S., H.-B. Seok, Y.-K. Kim, 2014. A Study on the Change of the Urban Heat Island Structure in Busan Metropolitan Area, Korea, Journal of Environmental Science International, 23(11): 1807-1819. 

  37. Lawrence, P.J., J.J. Feddema, G.B. Bonan, G.A. Meehl, B.C. O'Neill, K.W. Oleson, S. Levis, D.M. Lawrence, E. Kluzek, K. Lindsay, and P.E. Thornton, 2012. Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100, Journal of Climate, 25(9): 3071-3095. 

  38. Li, X., W. Zhou, and Z. Ouyang, 2013. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution?, Landscape and Urban Planning, 114: 1-8. 

  39. Liu, H. and Q. Weng, 2008. Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA, Environmental Monitoring and Assessment, 144(1-3): 199-219. 

  40. Liu, L. and Y. Zhang, 2011. Urban heat island analysis using the landsat TM data and ASTER Data:A case study in Hong Kong, Remote Sensing, 3(7): 1535-1552. 

  41. Mahmood, R., Sr.R.A. Pielke, K.G. Hubbard, D. Niyogi, P.A. Dirmeyer, C. McAlpine, A.M. Carleton, R. Hale, S. Gameda, A. Beltran-Przekurat, B. Baker, R. McNider, D.R. Legates, M. Shepherd, J. Du, P.D. Blanken, O.W. Frauenfeld, U.S. Nair, and S. Fall, 2014. Land cover changes and their biogeophysical effects on climate, International Journal of Climatology, 34(4): 929-953. 

  42. Majkowska, A., L. Kolendowicz, M. Polrolniczak, J. Hauke, and B. Czernecki, 2017. The urban heat island in the city of Poznan as derived from Landsat 5 TM, Theoretical and Applied Climatology, 128(3-4): 769-783. 

  43. Mavrakou, T., A. Polydoros, C. Cartalis, and M. Santamouris, 2018. Recognition of thermal hot and cold spots in Urban areas in support of mitigation plans to counteract overheating: Application for Athens, Climate, 6(1): 16. 

  44. Maxwell, S.K., G.L. Schmidt, and J.C. Storey, 2007. A multi-scale segmentation appro ach to filling gaps in Landsat ETM+ SLC-off images, International Journal of Remote Sensing, 28(23): 5339-5356. 

  45. Memon, R.A., D.Y.C. Leung, and C.H. Liu, 2009. An investigation of urban heat island intensity (UHII) as an indicator of urban heating, Atmospheric Research, 94(3): 491-500. 

  46. Morris, C.J.G., I. Simmonds, and N. Plummer, 2001. Quantification of the influence of wind and cloud on the nocturnal urban heat island of a large city, Journal of Applied Meteorology, 40(2): 169-182. 

  47. Odoemene, A., 2017. Chapter 15: Climate change and land grabbing, In: Angelo M. J. and A. D. Plesis, Research Handbook onClimateChange and Agricultural Law, Edward Elgar Publishing, Cheltenham, United Kingdom, pp. 423-449. 

  48. Oke, T.R., 1987. Boundary Layer Climates Second Edition, Routledge, London, UK. 

  49. Pal, S. and S. Ziaul, 2017. Detection of land use and land cover change and land surface temperature in English Bazar urban centre, Egyptian Journal of Remote Sensing and Space Science, 20(1): 125-145. 

  50. Pielke, Sr.R.A., 2005. Land use and climate change, Science, 310(5754): 1625-1626. 

  51. Portela, C.I., K.G. Massi, T. Rodrigues, and E. Alcantara, 2020.Impact of urban and industrial features on land surface temperature:Evidences from satellite thermal indices, Sustainable Cities and Society, 56(102100): 1-13. 

  52. Reay, D., C. Sabine, P. Smith, and G. Hymus, 2007. Spring-time for sinks, Nature, 446: 727-728. 

  53. Renard, F., L. Alonso, Y. Fitts, A. Hadjiosif, and J. Comby, 2019. Evaluation of the effect of urban redevelopment on surface urban heat islands, Remote Sensing, 11(3): 1-31. 

  54. Rosenfeld, A. H., H. Akbari, J. J. Romm, and M. Pomerantz, 1998. Cool communities: Strategies for heat island mitigation and smog reduction, Energy and Buildings, 28(1): 51-62. 

  55. Salata, F., I. Golasi, A. Lieto Vollaro, and R. Lieto Vollaro, 2015. How high albedo and traditional buildings' materials and vegetation affect the quality of urban microclimate, A case study, Energy and Buildings, 99: 32-49. 

  56. Sasaki, K.,A. Mochida, H.Yoshino, H.Watanabe, and T. Yoshida, 2008. A new method to select appropriate countermeasures against heat-island effects according to the regional characteristics of heat balance mechanism, Journal of Wind Engineering and Industrial Aerodynamics, 96(10-11): 1629-1639. 

  57. Scaramuzza, P., E. Micijevic, and G. Chander, 2004. SLC gap-filled products: Phase one methodology, https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-products-phaseone-methodology, Accessed on Jul. 20, 2021. 

  58. Schwarz, N., S. Lautenbach, and R. Seppelt, 2011. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures, Remote Sensing of Environment, 115(12): 3175-3186. 

  59. Sekertekin A. and S. Bonafoni, 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation, Remote Sensing, 12(2): 294. 

  60. Seto, K.C. and J.M. Shepherd, 2009. Global urban land-use trends and climate impacts, Current Opinion in Environmental Sustainability, 1(1): 89-95. 

  61. Seto, K.C., M. Fragkias,B. Guneralp, and M.K.Reilly, 2011. A meta-analysis of global urban land expansion, PLoS ONE, 6(8): e23777. 

  62. Snyder, W.C., Z. Wan, Y. Zhang, and Y.-Z. Feng, 1998. Classification-based emissivity for land surface temperature measurement from space, International Journal of Remote Sensing, 19(14): 2753-2774. 

  63. Sobrino, J.A., J.C. Jimenez-Munoz, and L. Paolini, 2004. Land surface temperature retrieval from LANDSAT TM 5, Remote Sensing of Environment, 90(4): 434-440. 

  64. Sobrino, J.A., J.C. Jimenez-Munoz, G. Soria, M. Romaguera, L. Guanter, J. Moreno, A. Plaza, and P. Martinez, 2008. Land surface emissivity retrieval from different VNIR and TIR sensors, IEEE Transactions on Geoscience and Remote Sensing, 46(2): 316-327. 

  65. Solanki, S.K., N.A. Krivova, and J.D. Haigh, 2013. Solar irradiance variability and climate, Annual Review of Astronomy and Astrophysics, 51: 311-351. 

  66. Sulong, G., A. Sadiq, and L. Edwar, 2015. Single and Multi-source Methods for Reconstruction the Gaps in Landsat 7 ETM+ SLC-off Images, Research Journal of Applied Sciences, Engineering and Technology, 11(4): 423-428. 

  67. Toparlar Y., 2018. A multiscale analysis of the urban heatisland effect: from city averaged temperatures to the energy demand of individual buildings, Technische Universiteit Eindhoven, Eindhoven, NL. 

  68. Tran, H., D. Uchihama, S. Ochi, and Y. Yasuoka, 2006. Assessment with satellite data ofthe urban heat island effects in Asian mega cities, International Journal of Applied Earth Observation and Geoinformation, 8(1): 34-48. 

  69. Unger, J., 2004. Intra-urban relationship between surface geometry and urban heat island:Review and new approach, Climate Research, 27(3): 253-264. 

  70. UN(United Nations), 2014. World Urbanization Prospects: The 2014 Revision, Highlights, https://population.un.org/wup/Publications/Files/WUP2014-Report.pdf, Accessed on Jul. 20, 2021. 

  71. UN(United Nations), 2018. World Urbanization Prospects: The 2018 Revision. https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf, Accessed on Jul. 20, 2021. 

  72. USGS(United States Geological Survey), 2004. Landsat 7 SLC-off Gap-Filled Products Phase Two Methodology, https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-products-phasetwo-methodology, Accessed on Jul. 20, 2021. 

  73. USGS(United States Geological Survey), 2016. Landsat 8 Data Users Handbook, https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-data-users-handbook, Accessed on Jul. 20, 2021. 

  74. Voogt, J.A. and T.R. Oke, 2003. Thermal remote sensing of urban climates, Remote Sensing of Environment, 86(3): 370-384. 

  75. Wang, S., Q. Ma, H. Ding, and H. Liang, 2016. Detection of urban expansion and land surface temperature change using multi-temporal landsat images, Resources, Conservation and Recycling, 128: 526-534. 

  76. Weston, K.J., 1988. Boundary layer climates (Second edition).ByT.R. Oke. Methuen. 1987. Pp. 435 + xvi. £39.95 hardback; £14.95 paperback, Quarterly Journal of the Royal Meteorological Society, 114: 1568. 

  77. Xian, G. and M. Crane, 2006. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data, Remote Sensing of Environment, 104(2): 147-156. 

  78. Yang, H., C. Xi, X. Zhao, P. Mao, Z. Wang, Y. Shi, T. He, and Z. Li, 2020. Measuring the urban land surface temperature variations under Zhengzhou city expansion using landsat-like data, Remote Sensing, 12(5): 801. 

  79. Yang, X., Y. Li, Z. Luo, and P.W. Chan, 2017. The urban cool island phenomenon in a high-rise high-density city and its mechanisms, International Journal of Climatology, 37(2): 890-904. 

  80. Yu, X., X. Guo, and Z. Wu, 2014. Land surface temperature retrieval from landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method, Remote Sensing, 6(10): 9829-9852. 

  81. Zeng, C., H. Shen, and L. Zhang, 2013. Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method, Remote Sensing of Environment, 131: 182-194. 

  82. Zhang, C., W. Li, and D. Travis, 2007. Gaps-fill of SLC-off Landsat ETM+ satellite image using a geostatistical approach, International Journal of Remote Sensing, 28(22): 5103-5122. 

  83. Zhang, C., W. Li, and D. Civco, 2014. Application of geographically weighted regression to fill gaps in SLC-off Landsat ETM+ satellite imagery, International Journal of Remote Sensing, 35(22): 7650-7672. 

  84. Zhou, D., J. Xiao, S. Bonafoni, C. Berger, K. Deilami, Y. Zhou, S. Frolking, R.Yao, Z. Qiao, and J.A. Sobrino, 2019. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives, Remote Sensing, 11(1): 48. 

  85. Zhou, X., T. Okaze, C. Ren, M. Cai, Y. Ishida, H. Watanabe, and A. Mochida, 2020. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze, Sustainable Cities and Society, 55(2020): 102060. 

  86. Zhu, X., D. Liu, and J.Chen, 2012. A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images, Remote Sensing of Environment, 124: 49-60. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로