$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

상용 유기용매 나노여과막 성능분석 및 비교
Comparison of Commercial Organic Solvent Nanofiltration (OSN) Membrane Performance 원문보기

멤브레인 = Membrane Journal, v.31 no.4, 2021년, pp.282 - 292  

김수민 (에너지화학공학과, 인천대학교) ,  송건탁 (에너지화학공학과, 인천대학교) ,  김정 (에너지화학공학과, 인천대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 Dead-end와 Crossflow 시스템을 사용하여 유기용매 나노여과(Organic Solvent Nanofiltration, OSN) 상용분리막의 성능을 분석하였다. 가교된 polyimide 소재 기반의 Duramem (DM) OSN 분리막의 성능을 ethanol, dimethylformamide (DMF), acetone, acetonitrile 용매에서의 성능을 분석하였다. 네 종류의 분획분자량 성능을 갖는 DM 분리막의 성능을 평가하였을 때 dead-end보다 Crossflow에서 조금 더 정확하고 신뢰성 높은 결과를 얻을 수 있었으며, 동일한 분리막이더라도 용매의 특성에 따라 투과도와 선택도 차이가 크게 난다는 것을 확인할 수 있었다. 이는 압밀화현상으로 인한 초기 안정화 기간의 차이 때문인 것으로 판단되며 분리막마다 안정화기간이 다르므로 신뢰성 높은 결과를 얻기 위해선 Crossflow 시스템을 활용하는 것이 더 적합한 것으로 보인다.

Abstract AI-Helper 아이콘AI-Helper

In this work, we tested commercial organic solvent nanofiltration (OSN) membranes using both in-house dead-end and crossflow systems. Four different crosslinked polyimide Duramem (DM) OSN membranes with various MWCO (molecular weight cut off) values were tested in organic solvents such as ethanol, N...

주제어

참고문헌 (56)

  1. X. Li, Y. Liu, J. Wang, J. Gascon, J. Li, B. Van der Bruggen, Metal-organic frameworks based membranes for liquid separation, Chem. Soc. Rev., 46(23), 7124-7144 (2017). 

  2. S.-L. Wee, C.-T. Tye, S. Bhatia, Membrane separation process-Pervaporation through zeolite membrane, Sep. Purif. Technol., 63(3), 500-516 (2008). 

  3. M. Amirilargani, M. Sadrzadeh, E. Sudholter, L. De Smet, Surface modification methods of organic solvent nanofiltration membranes, Chem. Eng. J., 289, 562-582 (2016). 

  4. M. Priske, M. Lazar, C. Schnitzer, G. Baumgarten, Recent applications of organic solvent nanofiltration, Chemie Ingenieur Technik, 88(1-2), 39-49 (2016). 

  5. C. Li, S. Li, L. Tian, J. Zhang, B. Su, M. Z. Hu, Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN), J. Memb. Sci., 572, 520-531 (2019). 

  6. S. Hermans, H. Marien, C. Van Goethem, I. F. Vankelecom, Recent developments in thin film (nano) composite membranes for solvent resistant nanofiltration, Curr Opin Chem Eng, 8, 45-54 (2015). 

  7. D. B. Shinde, G. Sheng, X. Li, M. Ostwal, A.-H. Emwas, K.-W. Huang, Z. Lai, Crystalline 2D covalent organic framework membranes for high-flux organic solvent Nanofiltration, J. Am. Chem. Soc., 140(43), 14342-14349 (2018). 

  8. F. Fei, H. A. Le Phuong, C. F. Blanford, G. Szekely, Tailoring the performance of organic solvent nanofiltration membranes with biophenol coatings, ACS Appl Polym Mater, 1(3), 452-460 (2019). 

  9. L. Peeva, J. da Silva Burgal, I. Valtcheva, A. G. Livingston, Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade, Chem. Eng. Sci., 116, 183-194 (2014). 

  10. Y. C. Xu, Y. P. Tang, L. F. Liu, Z. H. Guo, L. Shao, Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy, J. Memb. Sci., 526, 32-42 (2017). 

  11. M. Buonomenna, J. Bae, Organic solvent nanofiltration in pharmaceutical industry, Sep. Purif. Rev., 44(2), 157-182 (2015). 

  12. G. Szekely, J. Bandarra, W. Heggie, B. Sellergren, F. C. Ferreira, Organic solvent nanofiltration: A platform for removal of genotoxins from active pharmaceutical ingredients, J. Memb. Sci., 381(1-2), 21-33 (2011). 

  13. J. Geens, B. De Witte, B. Van der Bruggen, Removal of API's (active pharmaceutical ingredients) from organic solvents by nanofiltration, Sep. Sci. Technol., 42(11), 2435-2449 (2007). 

  14. J. P. Sheth, Y. Qin, K. K. Sirkar, B. C. Baltzis, Nanofiltration-based diafiltration process for solvent exchange in pharmaceutical manufacturing, J. Memb. Sci., 211(2), 251-261 (2003). 

  15. M. T. Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination, 235(1-3), 199-244 (2009). 

  16. R. M. Gould, L. S. White, C. R. Wildemuth, Membrane separation in solvent lube dewaxing, Environ. Prog., 20(1), 12-16 (2001). 

  17. S. R. Hosseinabadi, K. Wyns, V. Meynen, R. Carleer, P. Adriaensens, A. Buekenhoudt, B. Van der Bruggen, Organic solvent nanofiltration with Grignard functionalised ceramic nanofiltration membranes, J. Memb. Sci., 454, 496-504 (2014). 

  18. L. S. White, A. R. Nitsch, Solvent recovery from lube oil filtrates with a polyimide membrane, J. Memb. Sci., 179(1-2), 267-274 (2000). 

  19. A. V. Volkov, G. A. Korneeva, G. F. Tereshchenko, Organic solvent nanofiltration: prospects and application, Russ. Chem. Rev., 77(11), 983 (2008). 

  20. L. S. White, Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes, J. Memb. Sci., 286(1-2), 26-35 (2006). 

  21. L. P. Rama, M. Cheryan, N. Rajagopalan, Solvent recovery and partial deacidification of vegetable oils by membrane technology, Lipid/fett, 98(1), 10-14 (1996). 

  22. G. M. Shi, M. H. D. A. Farahani, J. Y. Liu, T.-S. Chung, Separation of vegetable oil compounds and solvent recovery using commercial organic solvent nanofiltration membranes, J. Memb. Sci., 588, 117202 (2019). 

  23. K. Werth, P. Kaupenjohann, M. Skiborowski, The potential of organic solvent nanofiltration processes for oleochemical industry. Sep. Purif. Technol., 182, 185-196 (2017). 

  24. S. Darvishmanesh, T. Robberecht, P. Luis, J. Degreve, B. Van der Bruggen, Performance of nanofiltration membranes for solvent purification in the oil industry, J. Am. Oil Chem. Soc., 88(8), 1255-1261 (2011). 

  25. H.-t. Wong, C. J. Pink, F. C. Ferreira, A. G. Livingston, Recovery and reuse of ionic liquids and palladium catalyst for Suzuki reactions using organic solvent nanofiltration, Green Chem., 8(4), 373-379 (2006). 

  26. J. M. Dreimann, M. Skiborowski, A. Behr, A. J. Vorholt, Recycling homogeneous catalysts simply by organic solvent nanofiltration: new ways to efficient catalysis, ChemCatChem, 8(21), 3330-3333 (2016). 

  27. D. W. Kim, Review on graphene oxide-based nanofiltration membrane, Membr. J., 29(3), 130-139 (2019). 

  28. E. Kim, R. Patel, Recent Advances in Metal Organic Framework based Thin Film Nanocomposite Membrane for Nanofiltration, Membr. J., 31(1), 35-51 (2021). 

  29. H. Richter, M. Weyd, A. Simon, J.-T. Kuhnert, C. Gunther, I. Voigt, A. Michaelis, Zeolite Membranes: Functionalizing of Properties by Tailored Compositions, Membr. J., 27(6), 469-476 (2017). 

  30. A. F. Ismail, L. P. Yean, Review on the development of defect-free and ultrathin-skinned asymmetric membranes for gas separation through manipulation of phase inversion and rheological factors, J. Appl. Polym. Sci., 88(2), 442-451 (2003). 

  31. P. Vandezande, X. Li, L. E. Gevers, I. F. Vankelecom, High throughput study of phase inversion parameters for polyimide-based SRNF membranes, J. Memb. Sci., 330(1-2), 307-318 (2009). 

  32. H. Tsai, Y. Ciou, C. Hu, K. Lee, D. Yu, J. Lai, Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes, J. Memb. Sci., 255(1-2), 33-47 (2005). 

  33. A. K. Holda, I. F. Vankelecom, Integrally skinned PSf-based SRNF-membranes prepared via phase inversion-Part B: Influence of low molecular weight additives, J. Memb. Sci., 450, 499-511 (2014). 

  34. T. Xiao, P. Wang, X. Yang, X. Cai, J. Lu, Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications, J. Memb. Sci., 489, 160-174 (2015). 

  35. M. H. D. A. Farahani, T.-S. Chung, A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN), Sep. Purif. Technol., 209, 182-192 (2019). 

  36. Y. Sun, S. Zhou, G. Qin, J. Guo, Q. Zhang, S. Li,S. Zhang, A chemical-induced crystallization strategy to fabricate poly (ether ether ketone) asymmetric membranes for organic solvent nanofiltration, J. Memb. Sci., 620, 118899 (2021). 

  37. L. Xia, J. Ren, M. Weyd, J. R. McCutcheon, Ceramic-supported thin film composite membrane for organic solvent nanofiltration, J. Memb. Sci., 563, 857-863 (2018). 

  38. S.-M. Kim, S. Hong, B.-T. Duy Nguyen, H.-Y. Nguyen Thi, S.-H. Park, J.-F. Kim, Effect of Additives during Interfacial Polymerization Reaction for Fabrication of Organic Solvent Nanofiltration (OSN) Membranes, Polymers, 13(11), 1716 (2021). 

  39. Y. S. Toh, F. Lim, A. Livingston, Polymeric membranes for nanofiltration in polar aprotic solvents, J. Memb. Sci., 301(1-2), 3-10 (2007). 

  40. I. Soroko, M. Sairam, A. Livingston, The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part C. Effect of polyimide characteristics, J. Memb. Sci., 381(1-2), 172-182 (2011). 

  41. I. Soroko, Y. Bhole, A. G. Livingston, Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes, Green Chem., 13(1), 162-168 (2011). 

  42. Y. H. See-Toh, F. C. Ferreira, A. G. Livingston, The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes, J. Memb. Sci., 299(1-2), 236-250 (2007). 

  43. S. Darvishmanesh, L. Firoozpour, J. Vanneste, P. Luis, J. Degreve, B. Van der Bruggen, Performance of solvent resistant nanofiltration membranes for purification of residual solvent in the pharmaceutical industry: experiments and simulation, Green Chem., 13(12), 3476-3483 (2011). 

  44. S. K. Lim, K. Goh, T.-H. Bae, R. Wang, Polymer-based membranes for solvent-resistant nanofiltration: A review, Chin. J. Chem. Eng., 25(11), 1653-1675 (2017). 

  45. K. Vanherck, G. Koeckelberghs, I. F. Vankelecom, Crosslinking polyimides for membrane applications: A review, Prog. Polym. Sci., 38(6), 874-896 (2013). 

  46. E. Arkhangelsky, A. Duek, V. Gitis, Maximal pore size in UF membranes, J. Memb. Sci., 394, 89-97 (2012). 

  47. J. Ren, Z. Li, F.-S. Wong, A new method for the prediction of pore size distribution and MWCO of ultrafiltration membranes, J. Memb. Sci., 279(1-2), 558-569 (2006). 

  48. H. Sun, D. Qi, J. Xu, S. Juan, C. Zhe, Fractionation of polysaccharides from rapeseed by ultra-filtration: Effect of molecular pore size and operation conditions on the membrane performance, Sep. Purif. Technol., 80(3), 670-676 (2011). 

  49. M. Janssen, C. Muller, D. Vogt, Recent advances in the recycling of homogeneous catalysts using membrane separation. Green Chem., 13(9), 2247-2257 (2011). 

  50. P. Vandezande, L. E. Gevers, I. F. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level, Chem. Soc. Rev., 37(2), 365-405 (2008). 

  51. L. G. Peeva, E. Gibbins, S. S. Luthra, L. S. White, R. P. Stateva, A. G. Livingston, Effect of concentration polarisation and osmotic pressure on flux in organic solvent nanofiltration, J. Memb. Sci., 236(1-2), 121-136 (2004). 

  52. A. Y. Kirschner, Y.-H. Cheng, D. R. Paul, R. W. Field, B. D. Freeman, Fouling mechanisms in constant flux crossflow ultrafiltration, J. Memb. Sci., 574, 65-75 (2019). 

  53. A. Imbrogno, A. I. Schafer, Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end), J. Memb. Sci., 585, 67-80 (2019). 

  54. S. S. Sablani, M. F. A. Goosen, R. Al-Belushi, M. Wilf, Concentration polarization in ultrafiltration and reverse osmosis: a critical review, Desalination, 141(3), 269-289 (2001). 

  55. S. Darvishmanesh, J. Degreve, B. Van der Bruggen, Mechanisms of solute rejection in solvent resistant nanofiltration: the effect of solvent on solute rejection, PCCP, 12(40), 13333-13342 (2010). 

  56. S. Karan, Z. Jiang, A. G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science, 348(6241), 1347-1351 (2015). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로