최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기멀티미디어학회논문지 = Journal of Korea Multimedia Society, v.24 no.9, 2021년, pp.1242 - 1250
박정희 (Division of Computer Convergence, Chungnam National University)
Detection of outliers deviating normal data distribution in high dimensional data is an important technique in many application areas. In this paper, a distance-based outlier detection method using landmarks in high dimensional data is proposed. Given normal training data, the k-means clustering met...
C. Aggarwal, Outlier Analysis, Springer, Switzerlnd, 2017.
C. Park. "Outlier and Anomaly Pattern Detection on Data Streams," The Journal of Supercomputing, Vol. 75, pp. 6118-6128, 2019.
S. Damaswanny, R. Rastogi, and K. Shim, "Efficient Algorithms for Mining Outliers from Large Data Sets," Proceeding of ACM Sigmod International Conference on Management of Data, pp. 427-438, 2000.
T. Vries, S. Chawla, and M. Houle, "Finding Local Anomalies in Very High Dimensional Space," Proceeding of International Conference on Data Mining, pp 128-137, 2010.
H. Hoffmann, "Kernel PCA for Novelty Detection," Pattern Recognition, Vol. 40, pp. 863- 874, 2007.
S. Sathe and C. Aggarwal, "Subspace Histograms for Outlier Detection in Linear Time," Knowledge and Information Systems, Vol. 56, pp. 691-715, 2018.
H. Kriegel, P. Kroger, E. Schubert, and A. Zimek, "Outlier Detection in Axis-parallel subspaces of High Dimensional Data," Proceeding of Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 831-838, 2009.
A. Lazarevic and V. Kumar, "Feature Bagging for Outlier Detection," Proceeding of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 157-166, 2005.
F. Liu, K. Ting, and Z. Zhou, "Isolation Forest," Proceeding of International Conference on Data Mining, pp. 413-422, 2008.
A. Putina, M. Sozio, D. Rossi, and J. Navarro, "Random Histogram Forest for Unsupervised Anomaly Detection," Proceedings of International Conference on Data Mining, pp. 1226-1231, 2020.
E. Knorr and R. Ng, "Finding Intensional Knowledge of Distance-based Outliers," Proceeding of 25th International Conference on Very Large Databases, pp. 211-222, 1999.
M. Breunig, H. Kriegel, R. Ng, and J. Sander, "LOF: Identifying Density-based Local Outliers," Proceeding of the ACM Sigmod International Conference on Management of Data, pp. 93-104, 2000.
E. Marchi, F. Vesperini, F. Weninger, F. Eyben, S. Squartini, and B. Schuller, "Non-linear Prediction with LSTM Recurrent Neural Networks for Acoustic Novelty Detection," Proceeding of International Joint Conference on Neural Networks, 2015.
K. Wu, K. Zhang, W. Fan, A. Edwards, and P. Yu, "RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection," Proceeding of the 14th International Conference on Data Mining, pp. 600-609, 2014.
E. Knor and R. Ng, "Algorithms for Mining Distance-based Outliers in Large Datasets," Proceeding of International Conference on Very Large Databases, pp. 392-403, 1998.
A. Zimek, E. Schubert, and H. Kriegel, "A Survey on Unsupervised Outlier Detection in High-dimensional Numerical Data," Statistical Analysis and Data Mining, Vol. 5, pp. 363-387, 2012.
The MNIST Database(1998), http://yann.lecun.com/exdb/mnist (Accessed February 20, 2019).
D. Greene and P. Cunningham, "Practical Solutions to the Problem of Diagonal Dominance in Kernel Document Clustering," Proceeding of International Conference on Machine Learning, pp. 377-384, 2006.
Y. Zhao, Z. Nasrullah and Z. Li, "PyOD: A Python Toolbox for Scalable Outlier Detection," Journal of Machine Learning Research, Vol. 20, pp. 1-7, 2019.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.