$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

금속 나노입자의 생체 합성과 항균적 적용
Biogenic Synthesis of Metallic Nanoparticles and Their Antibacterial Applications 원문보기

생명과학회지 = Journal of life science, v.31 no.9, 2021년, pp.862 - 872  

마헤쉬쿠마 프라카쉬 파틸 (부경대학교 산학협력단) ,  김종오 (부경대학교 미생물학과) ,  서용배 (부경대학교 기초과학연구소) ,  강민재 (부경대학교 해양수산생명과학부) ,  김군도 (부경대학교 미생물학과)

초록
AI-Helper 아이콘AI-Helper

최근 생물의학 분야에서의 광범위한 응용 가능성에 의하여 식물이나 미생물을 이용한 은(Ag), 금(Au), 백금(Pt), 세륨(Ce), 아연(Zn), 구리(Cu) 등의 금속 나노물질 합성에 관한 연구가 주목받고 있다. 식물은 플라보노이드, 알칼로이드, 사포닌, 스테로이드 탄닌과 각종 영양 성분과 같은 생리 활성 물질을 풍부하게 가지고 있으며, 유사하게 미생물들도 단백질과 같은 생리활성 대사산물이나 색소, 항생제 및 산과 같은 가치가 있는 화학물질을 분비한다. 최근 보고된 바에 의하면, 나노입자의 생체 합성은 무해한 방법일 뿐만 아니라 항균, 항진균, 세포 증식 억제 및 항플라스모디아 활성과 같은 생물의학 분야로서의 적용에 주요한 후보로 여겨진다. 나노입자의 이러한 생리 활성은 농도에 의존적이며, 나노입자의 모양과 크기에도 따라 달라질 수 있다. 미생물과 식물은 나노입자의 친환경적합성에 사용되는 대사산물이나 화학물질 등의 훌륭한 공급원으로서 생물 의학 분야에서 유용하게 사용된다. 미생물 또는 식물 원료를 사용하여 합성된 나노입자는 화학적인 방법으로 합성된 나노입자보다 더 낮은 독성을 나타낸다. 본 리뷰논문에서는 미생물이나 식물과 같은 생물학적 재료를 이용한 나노입자의 합성과, 합성에 사용되는 다양한 기술의 특성 및 나노입자의 항균 분야에서의 적용에 대하여 중점적으로 서술하였다.

Abstract AI-Helper 아이콘AI-Helper

Recent studies on synthesis of metallic nanomaterials such as silver (Ag), gold (Au), platinum (Pt), cerium (Ce), zinc (Zn), and copper (Cu) nanoparticles (NPs) using plants and microbes are attracted researchers for their wide range of applications in the field of biomedical sciences. The plant con...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

성능/효과

  • The biogenic NPs are more suitable for biomedical applications due to the tocchemical free nature and shape size can be manipulated or controlled in biogenic process of NPs synthesis. Despite these opportunities, the underlying challenges for biogenic NPs are includes stability of synthesized NPs, formation of nanoclusters, aggregation of nanomaterials and determination of toxicity on animals or environment is still not cleared well. Research on biogenic synthesis of NPs is still ongoing and day-by-day many updated research added in the field of biomedical science and medical science for the use of NPs in human wellness.
  • Research on biogenic synthesis of NPs is still ongoing and day-by-day many updated research added in the field of biomedical science and medical science for the use of NPs in human wellness. The progress in the growth of nanotechnology and its translation to clinical practices required comprehensive characterization, regulatory guidelines and suitable methods for detection of their toxicity.
본문요약 정보가 도움이 되었나요?

참고문헌 (105)

  1. Ahmad, T., Iqbal, J., Bustam, M. A., Zulfiqar, M., Muhammad, N., Al Hajeri, B. M., Irfan, M., Asghar, H. M. A. and Ullah, S. 2020. Phytosynthesis of cerium oxide nanoparticles and investigation of their photocatalytic potential for degradation of phenol under visible light. J. Mol. Struct. 1217, 128292. 

  2. Al-Radadi, N. S. 2019. Green synthesis of platinum nanoparticles using Saudi's dates extract and their sage on the cancer cell treatment. Arabian J. Chem. 12, 330-349. 

  3. Al Qhtani, M. S., El-Debaiky, S. A. and Sayed, M. 2020. Antifungal and cytotoxic activities of biosynthesized silver, zinc and gold nanoparticles by flower extract of Rhanterium epapposum. Open J. Appl. Sci. 10, 663. 

  4. Alsamhary, K. I. 2020. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci. 27, 2185-2191. 

  5. Amina, M., Al Musayeib, N. M., Alarfaj, N. A., El-Tohamy, M. F. and Al-Hamoud, G. A. 2020. Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, AgAu bimetallic alloy nanoparticles using the Asparagus racemosus root extract. Nanomaterials 10, 2453. 

  6. Amro, N. A., Kotra, L. P., Wadu-Mesthrige, K., Bulychev, A., Mobashery, S. and Liu, G. Y. 2000. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16, 2789- 2796. 

  7. Ananda Murthy, H. C., Desalegn, T., Kassa, M., Abebe, B. and Assefa, T. 2020. Synthesis of green copper nanoparticles using medicinal plant Hagenia abyssinica (Brace) JF. Gmel. leaf extract: antimicrobial properties. J. Nanomater. 2020, 3924081. 

  8. Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A. and Banin, E. 2012. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8, 3326-3337. 

  9. Arumugam, A., Karthikeyan, C., Haja Hameed, A. S., Gopinath, K., Gowri, S. and Karthika, V. 2015. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C. 49, 408-415. 

  10. Arya, A., Gupta, K., Chundawat, T. S. and Vaya, D. 2018. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg. Chem. Appl. 2018, 7879403. 

  11. Asimuddin, M., Shaik, M. R., Fathima, N., Afreen, M. S., Adil, S. F., Siddiqui, R. H., Jamil, K. and Khan, M. 2020. Study of antibacterial properties of Ziziphus mauritiana based green synthesized silver nanoparticles against various bacterial strains. Sustainability 12, 1484. 

  12. Awad, M. A., Eisa, N. E., Virk, P., Hendi, A. A., Ortashi, K. M., Mahgoub, A. S., Elobeid, M. A. and Eissa, F. Z. 2019. Green synthesis of gold nanoparticles: Preparation, characterization, cytotoxicity, and anti-bacterial activities. Mater. Lett. 256, 126608. 

  13. Awwad, A. M., Amer, M. W., Salem, N. M. and Abdeen, A. O. 2020. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem. Int. 6, 151-159. 

  14. Aygun, A., Gulbagca, F., Ozer, L. Y., Ustaoglu, B., Altunoglu, Y. C., Baloglu, M. C., Atalar, M. N., Alma, M. H. and Sen, F. 2020. Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J. Pharm. Biomed. Anal. 179, 112961. 

  15. Azam, A., Ahmed, A. S., Oves, M., Khan, M. S. and Memic, A. 2012. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. Int. J. Nanomed. 7, 3527. 

  16. Azizi, S., Ahmad, M. B., Namvar, F. and Mohamad, R. 2014. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett. 116, 275-277. 

  17. Borkow, G. and Gabbay, J. 2009. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol. 3, 272-278. 

  18. Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J. and Ahmadian, G. 2021. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 19, 86. 

  19. Behzadi, S., Ghasemi, F., Ghalkhani, M., Ashkarran, A. A., Akbari, S. M., Pakpour, S., Hormozi-Nazhad, M. R., Jamshidi, Z., Miradeghi, S., Dinarvand, R., Atyabi, F. and Mohmoudi, M. 2015. Determination of nanoparticles using UV-Vis spectra. Nanoscale 7, 5134-5139. 

  20. Bose, D. and Chatterjee, S. 2015. Antibacterial activity of green synthesized silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract. Indian J. Microbiol. 55, 163-167. 

  21. Castro, L., Blazquez, M. L., Gonzalez, F., Munoz, J. A. and Ballester, A. 2015. Biosynthesis of silver and platinum nanoparticles using orange peel extract: characterisation and applications. IET Nanobiotechnol. 9, 252-258. 

  22. Chaudhary, R., Nawaz, K., Khan, A. K., Hano, C., Abbasi, B. H. and Anjum, S. 2020. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 10, 1498. 

  23. Chahardoli, A., Karimi, N., Sadeghi, F. and Fattahi, A. 2018. Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artif. Cells Nanomed. Biotechnol. 46, 579-588. 

  24. Choi, J. S., Jung, H. C., Baek, Y. J., Kim, B. Y., Lee, M. W., Kim, H. D. and Kim, S. W. 2021. Antibacterial activity of green-synthesized silver nanoparticles using Areca catechu extract against antibiotic-resistant bacteria. Nanomaterials 11, 205. 

  25. Dhamecha, D., Jalalpure, S. and Jadhav, K. 2016. Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: characterization and biocompatibility studies. J. Photochem. Photobiol. B 154, 108-117. 

  26. Du, L., Xian, L. and Feng, J. X. 2011. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J. Nanopart. Res. 13, 921-930. 

  27. Es-Haghi, A., Taghavizadeh Yazdi, M. E., Sharifalhoseini, M., Baghani, M., Yousefi, E., Rahdar, A. and Baino, F. 2021. Application of response surface methodology for optimizing the therapeutic activity of ZnO nanoparticles biosynthesized from Aspergillus niger. Biomimetics 6, 34. 

  28. Fahmy, S. A., Preis, E., Bakowsky, U. and Azzazy, H. M. E. 2020. Platinum nanoparticles: green synthesis and biomedical applications. Molecules 25, 4981. 

  29. Gaidhani, S. V., Yeshvekar, R. K., Shedbalkar, U. U., Bellare, J. H. and Chopade, B. A. 2014. Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochem. 49, 2313-2319. 

  30. Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E. and Margel, S. 2011. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A 374, 1-8. 

  31. Guilger-Casagrande, M. and Lima, R. D. 2019. Synthesis of silver nanoparticles mediated by fungi: a review. Front. Bioeng. Biotechnol. 7, 287. 

  32. Hulkoti, N. I. and Taranath, T. C. 2014. Biosynthesis of nanoparticles using microbes-a review. Colloids Surf. B 121, 474-483. 

  33. Iravani, S., Korbekandi, H., Mirmohammadi, S. V. and Zolfaghari, B. 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9, 385. 

  34. Jadoun, S., Arif, R., Jangid, N. K. and Meena, R. K. 2021. Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett. 19, 355-374. 

  35. Javadi, F., Yazdi, M. E. T., Baghani, M. and Es-haghi, A. 2019. Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater. Res. Express 6. 065408. 

  36. Jayabalan, J., Mani, G., Krishnan, N., Pernabas, J., Devadoss, J. M. and Jang, H. T. 2019. Green biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its In vitro antibacterial and anti-biofilm activity. Biocatal. Agric. Biotechnol. 21, 101327. 

  37. Jeyapaul, U., Kala, M. J., Bosco, A. J., Piruthiviraj, P. and Easuraja, M. 2018. An eco-friendly approach for synthesis of platinum nanoparticles using leaf extracts of Jatropa grossypifolia and Jatropa glandulifera and its antibacterial activity. Orien. J. Chem. 34, 783-790. 

  38. Kairyte, K., Kadys, A. and Luksiene, Z. 2013. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J. Photochem. Photobiol. B 128, 78-84. 

  39. Kannan, S. K. and Sundrarajan, M. 2014. A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int. J. Nanosci. 13, 1450018. 

  40. Khodashenas, B. and Ghorbani, H. R. 2019. Synthesis of silver nanoparticles with different shapes. Arabian J. Chem. 12, 1823-1838. 

  41. Klaus, T., Joerger, R., Olsson, E. and Granqvist, C. G. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA. 96, 13611-13614. 

  42. Kolahalam, L. A., Viswanath, I. K., Diwakar, B. S., Givindh, B., Reddy, V. and Murthy, Y. L. N. 2019. Review on nanomaterials: synthesis and applications. Mater. Today: Proc. 18, 2182-2190. 

  43. Krithiga, N., Rajalakshami, A. and Jayachitra, A. 2015. Green synthesis of silver nanoparticles using leaf extract of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J. Nanosci. 2015, 928204. 

  44. Kuppusamy, P., Yusoff, M. M., Maniam, G. P. and Govindan, N. 2016. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm. J. 24, 473-484. 

  45. Lee, S. Y., Krishnamurthy, S., Cho, C. W. and Yun, Y. S. 2016. Biosynthesis of gold nanoparticles using Oscimum sanctum extracts with different polarity. ACS Sustain. CHem. Eng. 4, 2651-2659. 

  46. Li, G. R., Xu, H., Lu, X. F., Feng, J. X., Tong, Y. X. and Su, C. Y. 2013. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 5, 4056-4069. 

  47. Luksiene, Z. 2017. Nanoparticles and their potential application as antimicrobials in the food industry. In Food Preservation (pp. 567-601). Academic press. 

  48. Mali, S. C., Dhaka, A., Githala, C. K. and Trivedi, R. 2020. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and anti-fungal properties. Biotechnol. Rep. (Amst) 27, e00518. 

  49. Markus, J., Mathiyalagan, R., Kim, Y. J., Abbai, R., Singh, P., Ahn, S., Perez, Z. E. J., Hurh, J. and Yang, D. C. 2016. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme Microb. Technol. 95, 85-93. 

  50. Mata, R., Nakkala, J. R. and Sadras, S. R. 2016. Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induces apoptosis in HT-29 colon cancer cells. Colloids Surf., B 143, 499-510. 

  51. Maqbool, Q., Nazar, M., Naz, S., Hussain, T., Jabeen, N., Kausar, R., Anwaar, S., Abbas, F. and Jan, T. 2016. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int. J. Nanomed. 11, 5015. 

  52. Mollick, M. M. R., Rana, D., Dash, S. K., Chattopadhyay, S., Bhowmick, B., Maity, D., Mondal, D., Pattanayak, S., Roy, S., Chakraborty, M. and Chattopadhyay, D. 2019. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian J. Chem. 12, 2572-2584. 

  53. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B. and Yacaman, M. J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346-2353. 

  54. Muthuvel, A., Jothibas, M., Mohana, V. and Manoharan, C. 2020. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg. Chem. Commun. 119, 108086. 

  55. Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., Faisal, S., Mabood, Z. U., Hano, C. and Abbasi, B. H. 2020. Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. Int. J. Nanomed. 15, 5951. 

  56. Ozturk, B. Y., Gursu, B. Y. and Dag, I. 2020. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem. 89, 208-219. 

  57. Patil, M. P. and Kim, G. D. 2017. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol. 101, 79-92. 

  58. Patil, M. P. and Kim, G. D. 2018. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf., B 172, 487-495. 

  59. Patil, M. P. and Kim, G. D. 2020. Microorganisms-mediated functionalization of nanoparticles for different applications. pp. 279-298. In: Kumar, V., Guleria, P., Dasgupta, N. and Ranjan, S. (eds.), Functionalized Nanomaterials I: Fabrications. CRC Press, Taylor and Francis group. 

  60. Patil, M. P., Bayaraa, E., Subedi, P., Piad, L. L. A., Tarte, N. H. and Kim, G. D. 2019. Biogenic synthesis, characterization of gold nanoparticles using Lonicera japonica and their anticancer activity on HeLa cells. J. Drug Deliv. Sci. Technol. 51, 83-90. 

  61. Patil, M. P., Kang, M. J., Niyonizigiye, I., Singh, A., Kim, J. O., Seo, Y. B. and Kim, G. D. 2019. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant and antiproliferative effect on normal and cancer cell lines. Colloids Surf., B 183, 110455. 

  62. Patil, M. P., Rokade, A. A., Ngabire, D. and Kim, G. D. 2016. Green synthesis of silver nanoparticles using water extract from galls of Rhus chinensis and its antibacterial activity. J. Clust. Sci. 27, 1737-1750. 

  63. Patil, M. P., Seo, Y. B. and Kim, G. D. 2016. Morphological changes of bacterial cells upon exposure of silver-silver chloride nanoparticles synthesized using Agrimonia pilosa. Microb. Pathog. 116, 84-90. 

  64. Patil, M. P., Singh, R. D., Koli, P. B. Patil, K. T., Jagadale, B. S., Tipare, A. R. and Kim, G. D. 2018. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog. 121, 184-189. 

  65. Perveen, K., Husain, F. M., Qais, F. A., Khan, A., Razak, S., Afsar, T., Alam, P., Almajwal, A. M. and Abulmeaty, M. 2021. Microwave-assisted rapid green Synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity. Biomolecules 11, 197. 

  66. Pitchumani, K. M. and Annadurai, G. 2019. Biosynthesis of nanoceria from Bacillus subtilis: characterization and antioxidant potential. Res. J. Life Sci. 5, 644. 

  67. Poinern, G. E. J. 2014. A laboratory course in nanoscience and nanotechnology, 1st edn. CRC press, Taylor and Francis Group, Boca Raton. 

  68. Punniyakotti, P., Panneerselvam, P., Perumal, D., Aruliah, R. and Angaiah, S. 2020. Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess Biosyst. Eng. 43, 1649-1657. 

  69. Rad, S. S., Sani, A. M. and Mohseni, S. 2019. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. 131, 239-245. 

  70. Rajan, A., Rajan, A. R. and Philip, D. 2017. Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. OpenNano 2, 1-8. 

  71. Rajesh, K. M., Ajitha, B., Reddy, Y. A. K., Suneetha, Y. and Reddy, P. S. 2018. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 154, 593-600. 

  72. Rambabu, K., Bharath, G., Banat, F. and Show, P. L. 2021. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater. 402, 123560. 

  73. Ramanathan, R., Field, M. R., O'Mullane, A. P., Smooker, P. M., Bhargava, S. K. and Bansal, V. 2013. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial system. Nanoscale 21, 2300-2306. 

  74. Ramkumar, V. S., Pugazhendhi, A., Prakash, S., Ahila, N. K., Vinoj, G., Selvam, S., Kumar, G., Kannapiran, E. and Rajendran, R. B. 2017. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed. Pharmacother. 92, 479-490. 

  75. Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C. and Punnoose, A. 2007. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90, 213902. 

  76. Riddin, T. L., Gericke, M. and Whiteley, C. G. 2006. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17, 3482. 

  77. Saif Hasan, S., Singh, S., Parikh, R. Y., Dharne, M. S., Patole, M. S., Prasad, B. L. V. and Shouche, Y. S., 2008. Bacterial synthesis of copper/copper oxide nanoparticles. J. Nanosci. Nanotechnol. 8, 3191-3196. 

  78. Sakamoto, M., Fujistuka, M. and Majima, T. 2009. Light as a construction tool of metal nanoparticles: synthesis and mechanism. J. Photochem. Photobiol. C 10, 33-56. 

  79. Salem, S. S. and Fouda, A. 2021. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Elem. Res. 199, 344-370. 

  80. Salvadori, M. R., Ando, R. A., Oller do Nascimento, C. A. and Correa, B. 2014. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9, e87968. 

  81. Sanaeimehr, Z., Javadi, I. and Namvar, F. 2018. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 9, 1-16. 

  82. Saratale, R. G., Saratale, G. D., Shin, H. S., Jacob, J. M., Pugazhendhi, A., Bhaisare, M. and Kumar, G. 2018. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ. Sci. Pollut. Res. 25, 10164-10183. 

  83. Saravanan, M., Barik, S. K., MubarakAli, D., Prakash, P. and Pugazhendhi, A. 2018. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog. 116, 221-226. 

  84. Senapati, S., Syed, A., Moeez, S., Kumar, A. and Ahmad, A. 2012. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater. Lett. 79, 116-118. 

  85. Shafey, A. M. E. 2020. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. De Gruyter 9, 304-339. 

  86. Sharmila, G., Muthukumaran, C., Saraswathi, H., Sangeetha, E., Soundarya, S. and Kumar, N. M. 2019. Green synthesis, characterization and biological activities of nanoceria. Ceram. Int. 45, 12382-12386. 

  87. Shende, S., Ingle, A. P., Gade, A. and Rai, M. 2015. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microb. Biotechnol. 31, 865-873. 

  88. Singh, P., Kim, Y. J., Zhang, D. and Yang, D. C. 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588-599. 

  89. Sisubalan, N., Ramkumar, V. S., Pugazhendhi, A., Karthikeyan, C., Indira, K., Gopinath, K., Hameed, A. S. H. and Basha, M. H. G. 2017. ROS-mediated cytotoxic activity of ZnO and CeO 2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ. Sci. Pollut. Res. 25, 10482-10492. 

  90. Srivastava, S., Usmani, Z., Atanasov, A. G., Singh, V. K., Singh, N. P., Abdel-Azeem, A. M., Prasad, R., Gupta, G., Sharma, M. and Bhargava, A. 2021. Biological nanofactories: using living forms for metal nanoparticle synthesis. MiniRev. Med. Chem. 21, 245-265. 

  91. Su, D. 2017. Advanced elctron microscopy characterization of nanomaterials for catalysis. Green Energy Environ. 2, 70-83. 

  92. Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A. and Nabiev, I. 2018. Dependence of nanoparticles toxicity on their physical and chemical properties. Nanoscle Res. Lett. 13, 44. 

  93. Sumanth, B., Lakshmeesha, T. R., Ansari, M. A., Alzohairy, M. A., Udayashankar, A. C., Shobha, B., Niranjana, S. R., Srinivas, C. and Almatroudi, A. 2020. Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and its nanoantibiotic potential. Int. J. Nanomed. 15, 8519. 

  94. Tahir, K., Nazir, S., Ahmad, A., Li, B., Khan, A. U., Khan, Z. U. H., Khan, F. U., Khan, Q. U., Khan, A. and Rahman, A. U. 2017. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J. Photochem. Photobiol. B 166, 246-251. 

  95. Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W. and Grobelny, J. 2013. Detection limit of DLS and VU-vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. 2013, 313081. 

  96. Tripathi, R. M. and Chung, S. J. 2019. Biogenic nanomaterials: synthesis, characterization, and biomedical applications. J. Microbiol. Methods 157, 65-80. 

  97. Tyagi, S., Tyagi, P. K., Gola, D., Chauhan, N. and Bharti, R. K. 2019. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential. SN Appl. Sci. 1, 1-9. 

  98. Umar, H., Kavaz, D. and Rizaner, N. 2019. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomed. 14, 87-100. 

  99. Uzair, B., Liaqat, A., Iqbal, H., Menaa, B., Razzaq, A., Thiripuranathar, G., Fatima Rana, N. and Menaa, F. 2020. Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering 7, 129. 

  100. Venkatesh, K. S., Gopinath, K., Palani, N. S., Arumugam, A., Jose, S. P., Bahadur, S. A. and Ilangovan, R. 2016. Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: antibacterial and antibiofilm activity. RSC Adv. 6, 42720-42729. 

  101. Wu, S., Rajeshkumar, S., Madasamy, M. and Mahendran, V. 2020. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif. Cells Nanomed. Biotechnol. 48, 1153-1158. 

  102. Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I. and Nel, A. E. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2, 2121-2134. 

  103. Zhang, D., Ma, X. L., Gu, Y., Huang, H. and Zhang, G. W. 2020. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front. Chem. 8, 799. 

  104. Zhang, L., Ding, Y., Povey, M. and York, D. 2008. ZnO nanofluids-A potential antibacterial agent. Prog. Nat. Sci. 18, 939-944. 

  105. Zhang, Q., Kusada, K. and Kitagawa, H. 2021. Phase control of noble monometallic and alloy nanomaterials by chemical reduction methods. ChemPlusChem 86, 504-519. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로