최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기물과 미래 : 한국수자원학회지 = Water for future, v.54 no.9, 2021년, pp.99 - 105
박정하 (홍익대학교 토목공학과) , 김동균 (홍익대학교 건설환경공학과)
초록이 없습니다.
Park, J., Cross, D., Onof, C., Chen, Y., & Kim, D. (2021). A simple scheme to adjust Poisson cluster rectangular pulse rainfall models for improved performance at sub-hourly timescales. Journal of Hydrology, 598, 126296.
Cameron, D., Beven, K., & Tawn, J. (2000). An evaluation of three stochastic rainfall models. Journal of Hydrology, 228(1-2), 130-149.
Cowpertwait, P. S. (1998). A Poisson-cluster model of rainfall: some high-order moments and extreme values. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 885-898.
Cowpertwait, P. S. (1995). A generalized spatial-temporal model of rainfall based on a clustered point process. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 450(1938), 163-175.
Cowpertwait, P. S. (1994). A generalized point process model for rainfall. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 447(1929), 23-37.
Cowpertwait, P. S. P., O'Connell, P. E., Metcalfe, A. V., & Mawdsley, J. A. (1996). Stochastic point process modelling of rainfall. I. Single-site fitting and validation. Journal of Hydrology, 175(1-4), 17-46.
Han, L., Fu, S., Zhao, L., Zheng, Y., Wang, H., & Lin, Y. (2009). 3D convective storm identification, tracking, and forecasting-An enhanced TITAN algorithm. Journal of Atmospheric and Oceanic Technology, 26(4), 719-732.
Kaczmarska, J., Isham, V., & Onof, C. (2014). Point process models for fine-resolution rainfall. Hydrological Sciences Journal, 59(11), 1972-1991.
Kim, D., & Onof, C. (2020). A stochastic rainfall model that can reproduce important rainfall properties across the timescales from several minutes to a decade. Journal of Hydrology, 589, 125150.
Kim, J., Lee, J., Kim, D., & Kang, B. (2019). The role of rainfall spatial variability in estimating areal reduction factors. Journal of Hydrology, 568, 416-426.
Northrop, P. J., & Stone, T. M. (2005). A point process model for rainfall with truncated Gaussian rain cells. Department of Statistical Science, University College London, London, 1-15.
O'Gorman, P. A. (2015). Precipitation extremes under climate change. Current climate change reports, 1(2), 49-59.
Park, J., Onof, C., & Kim, D. (2019). A hybrid stochastic rainfall model that reproduces some important rainfall characteristics at hourly to yearly timescales. Hydrology and Earth System Sciences, 23(2), 989-1014.
Park, J., Cross, D., Onof, C., Chen, Y., & Kim, D. (2021). A simple scheme to adjust Poisson cluster rectangular pulse rainfall models for improved performance at sub-hourly timescales. Journal of Hydrology, 598, 126296.
Ramesh, N. I., Garthwaite, A. P., & Onof, C. (2018). A doubly stochastic rainfall model with exponentially decaying pulses. Stochastic Environmental Research and Risk Assessment, 32(6), 1645-1664.
Rodriguez-Iturbe, I., Cox, D. R., & Isham, V. (1987). Some models for rainfall based on stochastic point processes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 410(1839), 269-288.
Schleiss, M., Chamoun, S., & Berne, A. (2014). Nonstationarity in intermittent rainfall: The "dry drift". Journal of Hydrometeorology, 15(3), 1189-1204.
Zawadzki, I. I. (1973). Statistical properties of precipitation patterns. Journal of Applied Meteorology and Climatology, 12(3), 459-472.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.