$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 유기발광다이오드를 이용한 Photobiomodulation 기반 스킨케어 효과
Photobiomodulation-based Skin-care Effect of Organic Light-emitting Diodes 원문보기

한국광학회지 = Korean journal of optics and photonics, v.32 no.5, 2021년, pp.235 - 243  

김홍빈 (한국광기술원 광의료바이오연구센터) ,  정혜정 (한국광기술원 광의료바이오연구센터) ,  진석근 ((주)머티어리얼사이언스 OLED연구센터) ,  이병일 (한국광기술원 광의료바이오연구센터) ,  안재성 (한국광기술원 광의료바이오연구센터)

초록
AI-Helper 아이콘AI-Helper

Photobiomodulation (PBM) 치료법은 특정 파장대역의 광원이 미토콘드리아에서 ATP 생성을 촉진하는 현상을 이용하는 치료법으로서 상처 치유, 염증 감소, 통증 완화 효과가 있는 것으로 알려져 생물 및 의학 분야에서 많은 관심을 받고 있다. PBM 치료법에 대한 연구는 주로 레이저, 발광다이오드(LED)를 광원으로 사용하였고, 유기발광다이오드(OLED)가 가지는 장점에도 불구하고 PBM 치료법에 사용된 사례는 제한적이다. 본 연구에서는 적색(λ = 620 nm), 녹색(λ = 525 nm), 청색(λ = 455 nm) OLED 조명모듈을 사용하여 PBM에 의한 피부관리 효과를 분석하고 LED에 의한 PBM 효과와 비교하였다. OLED 조명모듈의 PBM에 의한 피부미용효과는 적색 OLED 조명모듈에 의한 collagen type 1 합성량 증가, 녹색 OLED 조명모듈에 의한 melanin 합성 억제, 청색 OLED 조명모듈에 의한 nitric oxide 생성 억제를 각각 측정하여 입증되었다.

Abstract AI-Helper 아이콘AI-Helper

Photobiomodulation (PBM)-based therapy, which uses a phenomenon in which a light source of a specific wavelength band promotes ATP production in mitochondria, has attracted much attention in the fields of biology and medicine because of its effects on wound healing, inflammation reduction, and pain ...

주제어

표/그림 (7)

참고문헌 (37)

  1. L. F. de Freitas and M. R. Hamblin, "Proposed mechanisms of photobiomodulation or low-level light therapy," IEEE J. Sel. Top. Quantum Electron. 22, 348-364 (2016). 

  2. Y.-Y. Huang, A. C. H. Chen, J. D. Carroll, and M. R. Hamblin, "Biphasic dose response in low level light therapy," Dose-response 7, 358-383 (2009). 

  3. R. M. da S. Campos, A. R. Damaso, D. C. L. Masquio, A. E. Aquino Jr., M. Sene-Fiorese, F. O. Duarte, L. Tock, N. A. Parizotto, and V. S. Bagnato, "Low-level laser therapy (LLLT) associated with aerobic plus resistance training to improve inflammatory biomarkers in obese adults," Lasers Med. Sci. 30, 1553-1563 (2015). 

  4. D. P. Kuffler, "Photobiomodulation in promoting wound healing: a review," Regen. Med. 11, 107-122 (2016). 

  5. E. Merigo, P. Vescovi, M. Margalit, E. Ricotti, S. Stea, M. Meleti, M. Manfredi, and C. Fornaini, "Efficacy of LLLT in swelling and pain control after the extraction of lower impacted third molars," Laser Ther. 24, 39-46 (2015). 

  6. P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, "Low-level laser (light) therapy (LLLT) for treatment of hair loss," Lasers Surg. Med. 46, 144-151 (2014). 

  7. H. J. Joo, K. H. Jeong, J. E. Kim, and H. Kang, "Various wavelengths of light-emitting diode light regulate the proliferation of human dermal papilla cells and hair follicles via Wnt/β-Catenin and the extracellular signal-regulated kinase pathways," Ann. Dermatol. 29, 747-754 (2017). 

  8. K. Montazeri, S. Mokmeli, and M. Barat, "The effect of combination of red, infrared and blue wavelengths of low-level laser on reduction of abdominal girth: a before-after case series," J. Lasers Med. Sci. 8, S22-S26 (2017). 

  9. N. Tripodi, D. Corcoran, P. Antonello, N. Balic, D. Caddy, A. Knight, C. Meehan, F. Sidiroglou, S. Fraser, D. Kiatos, M. Husaric, V. Apostolopoulos, and J. Feehan, "The effects of photobiomodulation on human dermal fibroblasts in vitro: a systematic review," J. Photochem. Photobiol. B 214, 112100 (2021). 

  10. J.-L. Boulnois, "Photophysical processes in recent medical laser developments: a review," Lasers Med. Sci. 1, 47-66 (1986). 

  11. A. Zam, "Laser-Tissue Interaction," in Lasers in Oral and Maxillofacial Surgery, S. Stubinger, F. Klampfl, M. Schmidt, H.-F. Zeilhofe, Eds. (Springer, Cham, Switzerland. 2020), pp. 25-34. 

  12. D. Hawkins, N. Houreld, and H. Abrahamse, "Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing," Ann. N. Y. Acad. Sci. 1056, 486-493 (2005). 

  13. P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, "Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring," Semin. Cutan. Med. Surg. 32, 41-52 (2013). 

  14. W.-S. Kim and R. G. Calderhead, "Is light-emitting diode phototherapy (LED-LLLT) really effective?," Laser Ther. 20, 205-215 (2011). 

  15. Y. Jeon, H.-R. Choi, J. H. Kwon, S. Choi, K. M. Nam, K.-C. Park, and K. C. Choi, "Sandwich-structure transferable freeform OLEDs for wearable and disposable skin wound photomedicine," Light Sci. Appl. 8, 114 (2019). 

  16. Y. Jeon, H.-R. Choi, M. Lim, S. Choi, H. Kim, J. H. Kwon, K.-C. Park, and K. C. Choi, "A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects," Adv. Mater. Technol. 3, 1700391 (2018). 

  17. S. Mo, P.-S. Chung, and J. C. Ahn, "630 nm-OLED accelerates wound healing in mice via regulation of cytokine release and genes expression of growth factors," Curr. Opt. Photon. 3, 485-495 (2019). 

  18. C. Mignon, N. E. Uzunbajakava, B. Raafs, N.V. Botchkareva, and D. J. Tobin, "Photobiomodulation of human dermal fibroblasts in vitro: decisive role of cell culture conditions and treatment protocols on experimental outcome," Sci. Rep. 7, 2797 (2017). 

  19. N. J. Pope, S. M. Powell, J. G. Wigle, and M. L. Denton, "Wavelength- and irradiance-dependent changes in intracellular nitric oxide level," J. Biomed. Opt. 25, 085001 (2020). 

  20. H. J. Serrage, S. Joanisse, P. R. Cooper, W. Palin, M. Hadis, O. Darch, A. Philp, and M. R. Milward, "Differential responses of myoblasts and myotubes to photobiomodulation are associated with mitochondrial number," J. Biophotonics 12, e201800411 (2019). 

  21. J. Hosoi, E. Abe, T. Suda, and T. Kuroki, "Regulation of melanin synthesis of B16 mouse melanoma cells by 1α, 25-dihydroxyvitamin D3 and retinoic acid," Cancer Res. 45, 1474- 1478 (1985). 

  22. M. A. Marletta, P. S. Yoon, R. Iyengar, C. D. Leaf, and J. S. Wishnok, "Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate," Biochemistry 27, 8706-8711 (1988). 

  23. K. D. Kroncke, K. Fehsel, and V. Kolb-Bachofen, "Inducible nitric oxide synthase in human diseases," Clin. Exp. Immunol. 113, 147-156 (1998). 

  24. S. Moncada and E. A. Higgs, "Molecular mechanisms and therapeutic strategies related to nitric oxide," FASEB J. 9, 1319-1330 (1995). 

  25. H. Ohshima and H. Bartsch, "Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis," Mutat. Res. 305, 253-264 (1994). 

  26. T.-S. Chang, "An updated review of tyrosinase inhibitors," Int. J. Mol. Sci. 10, 2440-2475 (2009). 

  27. V. J. Hearing, "Biogenesis of pigment granules: a sensitive way to regulate melanocyte function," J. Dermatol. Sci. 37, 3-14 (2005). 

  28. V. J. Hearing and M. Jimenez, "Mammalian tyrosinase-The critical regulatory control point in melanocyte pigmentation," Int. J. Biochem. 19, 1141-1147 (1987). 

  29. C. Bertolotto, P. Abbe, T. J. Hemesath, K. Bille, D. E. Fisher, J. P. Ortonne, and R. Ballotti, "Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes," J. Cell Biol. 142, 827-835 (1998). 

  30. Y. Cheli, F. Luciani, M. Khaled, L. Beuret, K. Bille, P. Gounon, J. P. Ortonne, C. Bertolotto, and R. Ballotti, "αMSH and Cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism," J. Biol. Chem. 284, 18699-18706 (2009). 

  31. J.-P. Ortonne, "Photoprotective properties of skin melanin," Br. J. Dermatol. 146, 7-10 (2002). 

  32. M. Seiberg, C. Paine, E. Sharlow, M. Eisinger, S. S. Shapiro, P. Andrade-Gordon, and M. Costanzo, "Inhibition of melanosome transfer results in skin lightening1 ," J. Investig. Dermatol. 115, 162-167 (2000). 

  33. K. Gelse, E. Poschl, and T. Aigner, "Collagens-structure, function, and biosynthesis," Adv. Drug Deliv. Rev. 55, 1531-1546 (2003). 

  34. B. Yang, C. Ji, J. Kang, W. Chen, Z. Bi, and Y. Wan, "Trans-Zeatin inhibits UVB-induced matrix metalloproteinase-1 expression via MAP kinase signaling in human skin fibroblasts," Int. J. Mol. Med. 23, 555-560 (2009). 

  35. A. M. Parfitt, L. S. Simon, A. R. Villanueva, and S. M. Krane, "Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with iliac bone formation rates and comparison with total alkaline phosphatase," J. Bone Miner. Res. 2, 427-436 (1987). 

  36. F. Sanger, "The Arrangement of amino acids in proteins," in Advances in Protein Chemistry, M. L. Anson, K. Bailey, J. T. Edsall, Eds. (Academic Press, MA, USA. 1952), Vol. 7, pp. 1-67. 

  37. K. Tsuji-Naito, S. Ishikura, M. Akagawa, and H. Saeki, "α-Lipoic acid induces collagen biosynthesis involving prolyl hydroxylase expression via activation of TGF-β-Smad signaling in human dermal fibroblasts," Connect. Tissue Res. 51, 378-387 (2010). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로