$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수산생물 중 유해물질의 인체 노출 및 위해평가 시스템 개발
Development of Human Exposure and Risk Assessment System for Chemicals in Fish and Fishery Products 원문보기

韓國環境保健學會誌 = Journal of environmental health sciences, v.47 no.5, 2021년, pp.454 - 461  

이재원 (켐아이넷(주) ICT융합연구소) ,  이승우 (켐아이넷(주) ICT융합연구소) ,  최민규 (해양수산부 국립수산과학원) ,  이헌주 (켐아이넷(주) ICT융합연구소)

Abstract AI-Helper 아이콘AI-Helper

Background: Fish and fishery products (FFPs) unintentionally contaminated with various environmental pollutants are major exposure pathways for humans. To protect human health from the consumption of contaminated FFPs, it is essential to develop a systematic tool for evaluating exposure and risks. O...

주제어

표/그림 (5)

참고문헌 (29)

  1. Duran A, Tuzen M, Soylak M. Assessment of trace metal concentrations in muscle tissue of certain commercially available fish species from Kayseri, Turkey. Environ Monit Assess. 2014; 186(7): 4619-4628. 

  2. Djedjibegovic J, Marjanovic A, Tahirovic D, Caklovica K, Turalic A, Lugusic A, et al. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Sci Rep. 2020; 10(1): 13238. 

  3. Olmedo P, Pla A, Hernandez AF, Barbier F, Ayouni L, Gil F. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ Int. 2013; 59: 63-72. 

  4. Ferrante M, Zanghi G, Cristaldi A, Copat C, Grasso A, Fiore M, et al. PAHs in seafood from the Mediterranean Sea: an exposure risk assessment. Food Chem Toxicol. 2018; 115: 385-390. 

  5. Jeong JY, Choi CW, Ryeom TK, Cho KH, Park SR, Shin HS, et al. Analysis and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in seafood from oil contaminated bay. Anal Sci Technol. 2010; 23(2): 187-195. 

  6. Lee SG, Kang EH, Kim AH, Choi SH, Hong DH, Karaulova EP, et al. Concentrations and risk assessment of heavy metal in shellfish and crustacean collected from Vladivostok Area in Russia. Korean J Fish Aquat Sci. 2019; 52(5): 452-460. 

  7. Im R, Youm HC, Kim DW, Bae HS, Ahn SJ, Ryu DY, et al. Dietary exposure assessment of arsenic in Korean adults. Environ Health Toxicol. 2010; 25(4): 307-314. 

  8. World Health Organization. Principles and Methods for the Risk Assessment of Chemicals in Food. Geneva: World Health Organization; 2009. p.6-11~6-12. 

  9. Kwon N, Suh J, Lee H. Data cleaning and integration of multi-year dietary survey in the Korea National Health and Nutrition Examination Survey (KNHANES) using database normalization theory. J Environ Health Sci. 2017; 43(4): 298-306. 

  10. Yoon H, Seo J, Kim T, Kim J, Jo A, Lee B, et al. Development of Korean exposure factors for children in Korea. J Environ Health Sci. 2017; 43(3): 167-175. 

  11. Xue J, Zartarian VG, Liu SV, Geller AM. Methyl mercury exposure from fish consumption in vulnerable racial/ethnic populations: probabilistic SHEDS-Dietary model analyses using 1999-2006 NHANES and 1990-2002 TDS data. Sci Total Environ. 2012; 414: 373-379. 

  12. Lee H, Lee K, Park JY, Min SG. Korean Ministry of Environment's web-based visual consumer product exposure and risk assessment system (COPER). Environ Sci Pollut Res Int. 2017; 24(14): 13142-13148. 

  13. Boon PE, Cunningham J, Moy GG, Ormerod D, Peterson BJ, Reuss R. Automated programs for calculating dietary exposure. In: Moy GG, Vannoort RW. editors. Total Diet Studies. New York: Springer; 2013. p.445-452. 

  14. Guo Z. Development of a Windows-based indoor air quality simulation software package. Environ Model Softw. 2000; 15(4): 403-410. 

  15. Fielding RT, Taylor RN. Principled design of the modern Web architecture. Paper presented at: Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium; 2000 June 9; Limerick, Ireland. New York: ACM Transactions on Internet Technology, 2002. p. 115-150. 

  16. Kang HS, Kwon NJ, Jeong J, Lee K, Lee H. Web-based Korean maximum residue limit evaluation tools: an applied example of maximum residue limit evaluation for trichlorfon in fishery products. Environ Sci Pollut Res Int. 2019; 26(7): 7284-7299. 

  17. Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003-2004 NHANES data. Environ Health Perspect. 2010; 118(3): 345-350. 

  18. European Food Safety Authority (EFSA), Brancato A, Brocca D, Ferreira L, Greco L, Jarrah S, et al. Use of EFSA pesticide residue intake model (EFSA PRIMo revision 3). EFSA J. 2018; 16(1): e05147. 

  19. DiNovi M. International Peer Review of FSANZ Dietary Modelling Team Practices and Procedures. Majura: Food Standards Australia & New Zealand; 2007. p.4-10. 

  20. Chen Y, Dennis SB, Hartnett E, Paoli G, Pouillot R, Ruthman T, et al. FDA-iRISK--a comparative risk assessment system for evaluating and ranking food-hazard pairs: case studies on microbial hazards. J Food Prot. 2013; 76(3): 376-385. 

  21. van der Voet H, de Boer WJ, Kruisselbrink JW, Goedhart PW, van der Heijden GW, Kennedy MC, et al. The MCRA model for probabilistic single-compound and cumulative risk assessment of pesticides. Food Chem Toxicol. 2015; 79: 5-12. 

  22. Jeong DI, Kang HS, Hwang MS, Hwang IG, Min SG, Lee H. The trend of monitoring database and risk assessment systems for food chemical in national and regional levels. Safe Food. 2015; 10(3): 3-11. 

  23. Kim JA, Jo IS, Shin Y, Jang JI, Kim SJ, Jung JH, et al. Analysis and risk assessment on arsenic, chrome, and nickel in dried marine products. J Food Hyg Saf. 2021; 36(2): 135-140. 

  24. Duan Y, Edwards JS, Xu MX. Web-based expert systems: benefits and challenges. Inf Manag. 2005; 42(6): 799-811. 

  25. Vilavert L, Borrell F, Nadal M, Jacobs S, Minnens F, Verbeke W, et al. Health risk/benefit information for consumers of fish and shellfish: FishChoice, a new online tool. Food Chem Toxicol. 2017; 104: 79-84. 

  26. Domingo JL. Nutrients and chemical pollutants in fish and shellfish. Balancing health benefits and risks of regular fish consumption. Crit Rev Food Sci Nutr. 2016; 56(6): 979-988. 

  27. Domingo JL, Bocio A, Falco G, Llobet JM. Benefits and risks of fish consumption Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology. 2007; 230(2-3): 219-226. 

  28. Domingo JL, Bocio A, Marti-Cid R, Llobet JM. Benefits and risks of fish consumption Part II. RIBEPEIX, a computer program to optimize the balance between the intake of omega-3 fatty acids and chemical contaminants. Toxicology. 2007; 230(2-3): 227-233. 

  29. Domingo JL. Omega-3 fatty acids and the benefits of fish consumption: is all that glitters gold? Environ Int. 2007; 33(7): 993-998. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로