최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Composites research = 복합재료, v.34 no.5, 2021년, pp.290 - 295
김성륜 (Department of Organic Materials and Textile Engineering, Jeonbuk National University) , 노예지 (Department of Organic Materials and Textile Engineering, Jeonbuk National University) , 장지운 (Department of Organic Materials and Textile Engineering, Jeonbuk National University) , 최성규 (Department of Organic Materials and Textile Engineering, Jeonbuk National University)
The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require c...
Guarino, Maria-Vittoria, Sime, L.C., Schroeder, D., Malmierca-Vallet, I., Rosenblum, E., Ringer, M., Ridley, J., Feltham, D., Bitz, C., Steig, E.J., Wolff, E., Stoeve, J., and Sellar, A., "Sea-ice-free Arctic During the Last Interglacial Supports Fast Future Loss," Nature Climate Change, Vol. 10, 2020, pp. 928-932.
Kulp, S.A., and Strauss, B.H., "New Elevation Data Triple Estimates of Global Vulnerability to Sea-Level Rise and Coastal Flooding," Nature Communications, Vol. 10, 2019, 4844.
Gao, Y., Gao, X., and Zhang, X., "The 2℃ Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change-From the United Nations Framework Convention on Climate Change to the Paris Agreement," Engineering, Vol. 3, No. 2, 2017, pp. 272-278.
Keith, D.R., Houstonm S., and Naumov, S., "Vehicle Fleet Turnover and the Future of Fuel Economy," Environmental Research Letters, Vol. 14, No. 2, 2019, 021001.
Park, K., Kittelson, D.B., Zachariah, M.R., and McMurry, P.H., "Measurement of Inherent Material Density of Nanoparticle Agglomerates," Journal of Nanoparticle Research, Vol. 6, 2004, pp. 267-272.
Son, Y.N., Moon, J.B., Lim, G., and Kim, C.G., "Hypervelocity Impact Analysis of Composite Plate For Space Shielding System," Composites Research, Vol. 23, No. 6, 2010, pp. 14-18.
Moon, C.J., Lee, C.L., Kweon, J.H., Choi, J.H., Jo, M.H., and Kim, T.G., "An Experimental Study on the Mechanical Properties of High Modulus Carbon-Epoxy Composite in Salt Water Environment," Composites Research, Vol. 21, No. 6, 2008, pp. 1-7.
Gu, G.Y., Wang, Z.J., Kwon, D.J., and Park, J.M., "Interfacial Durability and Acoustic Properties of Transparent xGnP/PVDF/xGnP Graphite Composites Film for Acoustic Actuator," Composites Research, Vol. 25, No. 3, 2012, pp. 70-75.
Jang, J.U., Park, H.C., Lee, H.S., Khil, M.S., and Kim, S.Y., "Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an Insitu Polymerizable Cyclic Oligoester," Scientific Reports, Vol. 8, 2018, 7659.
Kim, H.S., Jang, J.U., Yu, J., and Kim, S.Y., "Thermal Conductivity of Polymer Composites Based on the Length of Multiwalled Carbon Nanotubes," Composites Part B: Engineering, Vol. 79, 2015, pp. 505-512.
Noh, Y.J., Lee, S., Kim, S.Y., and Youn, J.R., "High-speed Fabrication of Thermoplastic Carbon Fiber Fabric Composites with a Polymerizable, Low-viscosity Cyclic Butylene Terephthalate Matrix for Automotive Applications," Macromolecular Research, Vol. 22, 2014, pp. 528-533.
Kim, S.H., Noh, Y.J., Ko, Y.W., Kim, S.Y., and Youn, J.R., "Improved Tensile Strength and Thermal Stability of Thermoplastic Carbon Fiber Fabric Composites by Heat Induced Crystallization of in situ Polymerizable Cyclic Butylene Terephthalate Oligomers," Polymer Engineering Science, Vol. 54, No. 9, 2014, pp. 2161-2169.
Noh, Y.J., Pak, S.Y., Hwang, S.H., Hwang, J.Y., Kim, S.Y., and Youn, J.R., "Enhanced Dispersion for Electrical Percolation Behavior of Multi-walled Carbon Nanotubes in Polymer Nanocomposites Using Simple Powder Mixing and in situ Polymerization with Surface Treatment of the Fillers," Composites Science and Technology, Vol. 89, 2013, pp. 29-37.
Lee, H.S., Kim, S.Y., Noh, Y.J., and Kim, S.Y., "Design of Microwave Plasma and Enhanced Mechanical Properties of Thermoplastic Composites Reinforced with Microwave Plasma-treated Carbon Fiber Fabric," Composites Part B: Engineering, Vol. 60, 2014, pp. 621-626.
Kim, S.Y., Noh, Y.J., and Yu, J., "Improved Thermal Conductivity of Polymeric Composites Fabricated by Solvent-free Processing for the Enhanced Dispersion of Nanofillers and a Theoretical Approach for Composites Containing Multiple Heterogeneities and Geometrized Nanofillers," Composites Science and Technology, Vol. 101, 2014, pp. 79-85.
Kim, S.Y., Noh, Y.J., and Yu, J., "Prediction and Experimental Validation of Electrical Percolation by Applying a Modified Micromechanics Model Considering Multiple Heterogeneous Inclusions," Composites Science and Technology, Vol. 106, 2015, pp. 156-162.
Kim, S.Y., Noh, Y.J., and Yu, J., "Thermal Conductivity of Graphene Nanoplatelets Filled Composites Fabricated by Solvent-free Processing for the Excellent Filler Dispersion and a Theoretical Approach for the Composites Containing the Geometrized Fillers," Composites Part A: Applied Science and Manufacturing, Vol. 69, 2015, pp. 219-225.
Noh, Y.J., and Kim, S.Y., "Synergistic Improvement of Thermal Conductivity in Polymer Composites Filled with Pitch Based Carbon Fiber and Graphene Nanoplatelets," Polymer Testing, Vol. 45, 2015, pp. 132-138.
Noh, Y.J., Kim, H.S., Ku, B.C., Khil, M.S., and Kim, S.Y., "Thermal Conductivity of Polymer Composites with Geometric Characteristics of Carbon Allotropes," Advanced Engineering Materials, Vol. 18, No. 7, 2016, pp. 1127-1132.
Kim, H.S., Kim, J.H., Yang, C.M., and Kim, S.Y., "Synergistic Enhancement of Thermal Conductivity in Composites Filled with Expanded Graphite and Multi-walled Carbon Nanotube Fillers via Melt-compounding Based on Polymerizable Low-viscosity Oligomer Matrix," Journal of Alloys and Compounds, Vol. 690, 2017, pp. 274-280.
Yu, J., Cha, J.E., and Kim, S.Y., "Thermally Conductive Composite Film Filled with Highly Dispersed Graphene Nanoplatelets via Solvent-free One-step Fabrication," Composites Part B: Engineering, Vol. 110, 2017, pp. 171-177.
Jang, J.U., Lee, H.S., Kim, J.W., Kim, S.Y., Kim, S.H., Hwang, I., Kang, B.J., and Kang, M.K., "Facile and Cost-effective Strategy for Fabrication of Polyamide 6 Wrapped Multi-walled Carbon Nanotube via Anionic Melt Polymerization of ε-caprolactam," Chemical Engineering Journal, Vol. 373, 2019, pp. 251-258.
Kim, S.Y., Jang, J.U., Haile, B.F., Lee, M.W., and Yang, B., "Swarm Intelligence Integrated Micromechanical Model to Investigate Thermal Conductivity of Multi-walled Carbon Nanotube-embedded Cyclic Butylene Terephthalate Thermoplastic Nanocomposites," Composites Part A: Applied Science and Manufacturing, Vol. 128, 2020, 105646.
Jang, J.U., Cha, J.E., Lee S.H., Kim, J., Yang, B., Kim, S.Y., and Kim, S.H., "Enhanced Electrical and Electromagnetic Interference Shielding Properties of Uniformly Dispersed Carbon Nanotubes Filled Composite Films via Solvent-free Process Using Ring-opening Polymerization of Cyclic Butylene Terephthalate," Polymer, Vol. 186, 2020, 122030.
Cho, J., Lee, H., Nam, K.H., Yeo, H., Yang, C.M., Seong, D.G., Lee, D., and Kim, S.Y., "Enhanced Electrical Conductivity of Polymer Nanocomposite Based on Edge-selectively Functionalized Graphene Nanoplatelets," Composites Science and Technology, Vol. 189, 2020, 108001.
Jang, J.U., Lee, S.H., Kim, J., Kim, S.Y., Kim, and S.H., "Nanobridge Effect on Thermal Conductivity of Hybrid Polymer Composites Incorporating 1D and 2D Nanocarbon Fillers," Composites Part B: Engineering, Vol. 222, 2021, 109072.
Balandin, A.A., "Thermal Properties of Graphene and Nanostructured Carbon Materials," Nature Materials, Vol. 10, 2011, pp. 569-581.
Jang, H.G., Yang, B., Khil, M.S., Kim, S.Y., and Kim, J., "Comprehensive Study of Effects of Filler Length on Mechanical, Electrical, and Thermal Properties of Multi-walled Carbon Nanotube/Polyamide 6 Composites," Composites Part A: Applied Science and Manufacturing, Vol. 125, 2019, 105542.
Park, M., Lee, H., Jang, J.U., Park, J.H., Kim, C.H., Kim, S.Y., and Kim, J., "Phenyl Glycidyl Ether as an Effective Noncovalent Functionalization Agent for Multiwalled Carbon Nanotube Reinforced Polyamide 6 Nanocomposite Fibers," Composites Science and Technology, Vol. 177, 2019, pp. 96-102.
Cho, J., Jang, H.G., Kim, S.Y., and Yang, B., "Flexible and Coatable Insulating Silica Aerogel/Polyurethane Composites via Soft Segment Control," Composites Science and Technology, Vol. 171, 2019, pp. 244-251.
Kim, Y.G., Kim, H.S., Jo, S.M., Kim, S.Y., Yang, B.J., Cho, J., Lee, S., and Cha, J.E., "Thermally Insulating, Fire-retardant, Smokeless and Flexible Polyvinylidene Fluoride Nanofibers Filled with Silica Aerogels," Chemical Engineering Journal, Vol. 351, 2018, pp. 473-481.
Kim, H.S., Jang, J.U., Lee, H., Kim, S.Y., Kim, S.H., Kim, J., Jung, Y.C., and Yang, B.J., "Thermal Management in Polymer Composites: A Review of Physical and Structural Parameters," Advanced Engineering Materials, Vol. 20, No. 10, 2018, 1800204.
Kim, H.S., Kim, J.H., Kim, W.Y., Lee, H.S., Kim, S.Y., and Khil, M.S., "Volume Control of Expanded Graphite Based on Inductively Coupled Plasma and Enhanced Thermal Conductivity of Epoxy Composite by Formation of the Filler Network," Carbon, Vol. 119, 2017, pp. 40-46.
Yu, J., Choi, H.K., Kim, H.S., and Kim, S.Y., "Synergistic Effect of Hybrid Graphene Nanoplatelet and Multi-walled Carbon Nanotube Fillers on the Thermal Conductivity of Polymer Composites and Theoretical Modeling of the Synergistic Effect," Composites Part A: Applied Science and Manufacturing, Vol. 88, 2016, pp. 79-85.
Kim, H.M., Noh, Y.J., Yu, J., Kim, S.Y., and Youn, J.R., "Silica Aerogel/Polyvinyl Alcohol (PVA) Insulation Composites with Preserved Aerogel Pores Using Interfaces between the Super-hydrophobic Aerogel and Hydrophilic PVA Solution," Composites Part A: Applied Science and Manufacturing, Vol. 75, 2015, pp. 39-45.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.