$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

사료 내 갈색거저리(Tenebrio molitor) 유충과 동애등에(Hermetia illucens) 유충의 첨가에 따른 흰다리새우(Litopenaeus vannamei)의 비특이적 면역력, 항산화력, Vibrio parahaemolyticus에 대한 저항성 및 성장 효과
Effects of Dietary Mealworm Tenebrio molitor Larvae and Black Soldier Fly Hermetia illucens Larvae on Pacific White Shrimp Litopenaeus vannamei: Innate Immune Responses, Anti-oxidant Enzyme Activity, Disease Resistance against Vibrio parahaemolyticus and Growth 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.54 no.5, 2021년, pp.624 - 633  

신재형 (제주대학교 해양생명과학과) ,  신재범 (제주대학교 해양생명과학과) ,  엄건호 (제주대학교 해양생명과학과) ,  이경준 (제주대학교 해양과학연구소)

Abstract AI-Helper 아이콘AI-Helper

This study was conducted to determine the supplemental effects of two insect meals, mealworm (MW) and black soldier fly (BSF), with high or low lipid levels in diets, on Pacific white shrimp Litopenaeus vannamei. Sardine and tuna by-product meals were used as the fish meal source in a control (Con) ...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • 01 mg/L로 유지되었다. 실험사료는 새우 체중의 4-8%를 1일 6회(08:30, 10:30, 12:30, 14:30, 16:30, 18:30)에 걸쳐 총 45일간 공급되었다. 실험수조의 광주기는 형광등을 통해 조절되었고, 사육수는 수질을 고려하여 2-3일 간격으로 환수하였다.
  • 대조사료(control, Con) 에는 두 종류의 어분(정어리 어분, 참치부산물분)과 대두박 이주요 단백질원으로 사용되었다(Table 2). 실험사료는 총 5종으로 대조사료의 어분단백질을 비탈지 혹은 탈지 갈색거저리와 동애등에 분말로 각각 20% 대체한 4종의 사료(MW, deMW, BSF, deBSF)로 구성하였다. 사료원료는 분쇄기를 이용하여 분쇄한 후 조성표에 따라 혼합되었다.
  • 실험새우(0.47±0.03 g)는 총 20개의 수조(210 L)에 23마리씩 무작위로 사료구 당 4반복으로 배치되었다
  • 실험새우의 최종무게(final body weight, FBW)와 생존율(survival)을 조사하기 위해 새우를 20시간 동안 절식시켰다. 실험새우의 무게와 사료공급량을 이용하여 일간성장률(specific growth ratio, SGR), 단백질이용효율(protein efficiency ratio, PER), 사료계수(feed conversion ratio, FCR)를 계산하였다. 각 실험 수조에서 8마리의 실험새우를 무작위로 선정하여 얼음물로 마취시켰다.

대상 데이터

  • 갈색거저리, 탈지갈색거저리(defatted mealworm, deMW), 동애등에, 탈지동애등에(defatted black soldier fly, deBSF) 가실험에 사용되었다. 갈색거저리 유충 분말은 (주)KEIL (Seoul, Korea)에서, 동애등에 유충 분말은 (주)Entomo (Cheongju, Korea)에서 구매하였다. 원료의 일반성분, 아미노산, 지방산, chitin의 함량은 Table 1에 나타내었다.
  • 갈색거저리, 탈지갈색거저리(defatted mealworm, deMW), 동애등에, 탈지동애등에(defatted black soldier fly, deBSF) 가실험에 사용되었다. 갈색거저리 유충 분말은 (주)KEIL (Seoul, Korea)에서, 동애등에 유충 분말은 (주)Entomo (Cheongju, Korea)에서 구매하였다.

데이터처리

  • 각 항목의 결과는 Duncan’s multiple test를 이용하여 유의성(P<0.05)을 검증하였고, 백분율데이터는 arcsine 변형 값으로 통계분석 하였다.
  • 실험 수조 내 사료의 배치는 완전임의배치법(randomized complete block design)을 이용하였다. 사육실험과 침지 감염실험의 결과는 SPSS (Version 18.0; SPSS, Chicago, IL, USA)를 이용하여 통계 분석되었다(One-way ANOVA). 각 항목의 결과는 Duncan’s multiple test를 이용하여 유의성(P<0.

이론/모형

  • 실험 수조 내 사료의 배치는 완전임의배치법(randomized complete block design)을 이용하였다. 사육실험과 침지 감염실험의 결과는 SPSS (Version 18.
본문요약 정보가 도움이 되었나요?

참고문헌 (55)

  1. Abdel-Ghany HM and Salem MES. 2020. Effects of dietary chitosan supplementation on farmed fish; a review. Rev Aquac 12, 438-452. https://doi.org/10.1111/raq.12326. 

  2. Akiyama DM, Dominy WG and Lawrence AL. 1992. Penaeid shrimp nutrition. In: Marine shrimp culture principles and practice. Fast AW and Lester LJ, 1st ed. Elsevier Science Publishers, New York, NY, U.S.A., 535-568. 

  3. Amparyup P, Charoensapsri W and Tassanakajon A. 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol 34, 990-1001. https://doi.org/10.1016/j.fsi.2012.08.019. 

  4. AOAC (Association of Official Analytical Chemists). 2005. Official methods of analysis. Association of Official Analytical Chemists, Arlington, VA, U.S.A. https://doi.org/10.1002/0471740039.vec0284. 

  5. Askarian F, Zhou Z, Olsen RE, Sperstad S and Ringo E. 2012. Culturable autochthonous gut bacteria in Atlantic salmon Salmo salar L. fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326-329, 1-8. https://doi.org/10.1016/j.aquaculture.2011.10.016. 

  6. Barroso FG, Sanchez-Muros MJ, Segura M, Morote E, Torres A, Ramos R and Guil JL. 2017. Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J Food Compost Anal 62, 8-13. https://doi.org/10.1016/j.jfca.2017.04.008. 

  7. Bruni L, Pastorelli R, Viti C, Gasco L and Parisi G. 2018. Characterisation of the intestinal microbial communities of rainbow trout Oncorhynchus mykiss fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 487, 56-63. https://doi.org/10.1016/j.aquaculture.2018.01.006. 

  8. Cerenius L and Soderhall K. 2004. The prophenoloxidase-activating system in invertebrates. Immunol Rev 198, 116-126. https://doi.org/10.1111/j.0105-2896.2004.00116.x. 

  9. Choi IH, Kim JM, Kim NJ, Kim JD, Park C, Park JH and Chung TH. 2018. Replacing fish meal by mealworm Tenebrio molitor on the growth performance and immunologic responses of white shrimp Litopenaeus vannamei. Acta Sci 40, 1-9. https://doi.org/10.4025/actascianimsci.v40i1.39077. 

  10. Choi SC, Ingale SL, Kim JS, Park YK, Kwon IK and Chae BJ. 2013. An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. Br Poult Sci 54, 738-746. https://doi.org/10.1080/00071668.2013.838746. 

  11. Cummins Jr, VC, Rawles SD, Thompson KR, Velasquez A, Kobayashi Y, Hager J and Webster CD. 2017. Evaluation of black soldier fly Hermetia illucens larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture 473, 337-344. https://doi.org/10.1016/j.aquaculture.2017.02.022. 

  12. Ellis AE. 1990. Serum antiproteases in fish. In: Techniques in fish immunology. JS Stolen, TC Fletcher, DP Anderson, BS Roberson and WB van Muiswinkel, eds. SOS publications, Fair Haven, NJ, U.S.A., 95-99. 

  13. FAO (Food and Agriculture Organization of the United Nations). 2018. The state of world fisheries and aquaculture 2018. Meeting the sustainable development goals. FAO Report, Rome, Italy, 227. 

  14. Foysal MJ, Fotedar R, Tay CY and Gupta SK. 2019. Dietary supplementation of black soldier fly Hermetica illucens meal modulates gut microbiota, innate immune response and health status of marron Cherax cainii, Austin 2002 fed poultry-by-product and fishmeal based diets. PeerJ 7, e6891. https://doi.org/10.7717/peerj.6891/supp-1. 

  15. Fridovich I. 1998. Oxygen toxicity: a radical explanation. J Exp Biol 201, 1203-1209. https://doi.org/10.1242/jeb.201.8.1203. 

  16. Gajardo K, Rodiles A, Kortner TM, Krogdahl A, Bakke AM, Merrifield DL and Sorum H. 2016. A high-resolution map of the gut microbiota in Atlantic salmon Salmo salar: a basis for comparative gut microbial research. Sci Rep 6, 30893. https://doi.org/10.1038/srep30893. 

  17. Garces R and Mancha M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem 211, 139-143. https://doi.org/10.1006/abio.1993.1244. 

  18. Han JE, Kim JE, Jo H, Eun JS, Lee C, Kim JH and Kim JW. 2019. Increased susceptibility of white spot syndrome virusexposed Penaeus vannamei to Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease. Aquaculture 512, 734333. https://doi.org/10.1016/j.aquaculture.2019.734333. 

  19. Han JE, Tang KF, Pantoja CR, White BL and Lightner DV. 2015a. qPCR assay for detecting and quantifying a virulence plasmid in acute hepatopancreatic necrosis disease (AHPND) due to pathogenic Vibrio parahaemolyticus. Aquaculture 442, 12-15. https://doi.org/10.1016/j.aquaculture.2015.02.024. 

  20. Han JE, Tang KF, Tran LH and Lightner DV. 2015b. Photorhabdus insect-related (Pir) toxin-like genes in a plasmid of Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) of shrimp. Dis Aquat Org 113, 33-40. https://doi.org/10.3354/dao02830. 

  21. Henry MA, Gasco L, Chatzifotis S and Piccolo G. 2018. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev Com Immunol 81, 204-209. https://doi.org/10.1016/j.dci.2017.12.002. 

  22. Henry MA, Gasco L, Piccolo G and Fountoulaki E. 2015. Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol 203, 1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001. 

  23. Hernandez-Lopez J, Gollas-Galvan T and Vargas-Albores F. 1996. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113, 61-66. https://doi.org/10.1016/0742-8413(95)02033-0. 

  24. Hwang JS, Kang BR, Kim SR, Yun EY, Park KH, Jeon JP and Kim IS. 2008. Molecular characterization of a defensin-like peptide from larvae of a beetle Protaetia brevitarsis. Int J Indust Entomol 17, 131-135. 

  25. Ido A, Hashizume A, Ohta T, Takahashi T, Miura C and Miura T. 2019. Replacement of fish meal by defatted yellow mealworm Tenebrio molitor larvae in diet improves growth performance and disease resistance in red seabream Pargus major. Animals 9, 100. https://doi.org/10.3390/ani9030100. 

  26. Jozefiak A and Engberg RM. 2017. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J Ani Feed Sci 26, 87-99. https://doi.org/10.22358/jafs/69998/2017. 

  27. Khempaka S, Chitsatchapong C and Molee W. 2011. Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. J Appl Poult Res 20, 1-11. https://doi.org/10.3382/japr.2010-00162. 

  28. Lee KH, Hong SY and Oh JE. 1998. Synthesis and structurefunction study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor. FEBS Lett 439, 41-45. https://doi.org/10.1016/s0014-5793(98)01333-7. 

  29. Li Y, Kortner TM, Chikwati EM, Munang'andu HM, Lock EJ and Krogdahl A. 2019. Gut health and vaccination response in pre-smolt Atlantic salmon Salmo salar fed black soldier fly Hermetia illucens larvae meal. Fish Shellfish Immunol 86, 1106-1113. https://doi.org/10.1016/j.fsi.2018.12.057. 

  30. MAFRA (Ministry of Agriculture, Food and Rural Affairs). 2019. The investigation of insects industry 2018. Retrieved from https://www.mafra.go.kr/bbs/mafra/65/320711/artclView.do on Aug 17, 2021. 

  31. Motte C, Rios A, Lefebvre T, Do H, Henry M and Jintasataporn O. 2019. Replacing fish meal with defatted insect meal (Yellow Mealworm Tenebrio molitor) improves the growth and immunity of Pacific white shrimp Litopenaeus vannamei. Animals 9, 258. https://doi.org/10.3390/ani9050258. 

  32. Ng WK, Liew FL, Ang LP and Wong KW. 2001. Potential of mealworm Tenebrio molitor as an alternative protein source in practical diets for African catfish Clarias gariepinus. Aquac Res 32, 273-280. https://doi.org/10.1046/j.1355-557x.2001.00024.x. 

  33. Ngo DH and Kim SK. 2014. Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res 73, 15-31. https://doi.org/10.1016/B978-8-12-800268-1.00002-0. 

  34. Nicolas P. 2009. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276, 6483-6496. https://doi.org/10.1111/j.1742-4658.2009.07359.x. 

  35. Niu J, Lin HZ, Jiang SG, Chen X, Wu KC, Liu YJ and Tian LX. 2013. Comparison of effect of chitin, chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine on growth performance, antioxidant defenses and oxidative stress status of Penaeus monodon. Aquaculture 372-375, 1-8. https://doi.org/10.1016/j.aquaculture.2012.10.021. 

  36. Nogales-Merida S, Gobbi P, Jozefiak D, Mazurkiewicz J, Dudek K, Rawski M and Jozefiak A. 2019. Insect meals in fish nutrition. Rev Aquac 11, 1080-1103. https://doi.org/10.1111/raq.12281. 

  37. Panini RL, Freitas LEL, Guimaraes AM, Rios C, da Silva MFO, Vieira FN and Amboni RD. 2017a. Potential use of mealworms as an alternative protein source for Pacific white shrimp: digestibility and performance. Aquaculture 473, 115-120. https://doi.org/10.1016/j.aquaculture.2017.02.008. 

  38. Panini RL, Pinto SS, Nobrega RO, Vieira FN, Fracalossi DM, Samuels RI and Amboni RD. 2017b. Effects of dietary replacement of fishmeal by mealworm meal on muscle quality of farmed shrimp Litopenaeus vannamei. Food Res Int 102, 445-450. https://doi.org/10.1016/j.foodres.2017.09.017. 

  39. Powell A and Rowley AF. 2007. The effect of dietary chitin supplementation on the survival and immune reactivity of the shore crab Carcinus maenas. Comp Biochem Physiol A Mol Integr Physiol 147, 122-128. https://doi.org/10.1016/j.cbpa.2006.12.027. 

  40. Rahimnejad S, Hu S, Song K, Wang L, Lu K, Wu R and Zhang C. 2019. Replacement of fish meal with defatted silkworm (Bombyx mori L.) pupae meal in diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture 510, 150-159. https://doi.org/10.1016/j.aquaculture.2019.05.054. 

  41. Ravi C, Jeyashree A and Devi KR. 2011. Antimicrobial peptides from insects: an overview. Res Biotechnol 2, 1-7. 

  42. Renna M, Schiavone A, Gai F, Dabbou S, Lussiana C, Malfatto V and De Marco M. 2017. Evaluation of the suitability of a partially defatted black soldier fly Hermetia illucens L. larvae meal as ingredient for rainbow trout Oncorhynchus mykiss Walbaum diets. J Anim Sci Biotechnol 8, 57. https://doi.org/10.1186/s40104-017-0191-3. 

  43. Rosen H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67, 10-15. https://doi.org/10.1016/0003-9861(57)90241-2. 

  44. Shiau SY and Yu YP. 1998. Chitin but not chitosan supplementation enhances growth of grass shrimp Penaeus monodon. J Nutr 128, 908-912. https://doi.org/10.1093/jn/128.5.908. 

  45. Shin Jh, Jo SH, Ko DH and Lee KJ. 2020. Replacing fish meal with black soldier fly larvae and mealworm larvae in diets for Pacific white shrimp Litopenaeus vannamei. Korean J Fish Aquatic Sci 53, 900-908. https://doi.org/10.5657/kfas.2020.0900. 

  46. Song YL and Li CY. 2014. Shrimp immune system-special focus on penaeidin. J Mar Sci Technol 22, 1-8. https://doi.org/10.6119/JMST-013-0813-1. 

  47. Song YS, Kim MW, Moon C, Seo DJ, Han YS, Jo YH and Jung WJ. 2018. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm Tenebrio molitor. Entomol Res 48, 227-233. https://doi.org/10.1111/1748-5967.12304. 

  48. Strickland JDH and Parsons TR. 1972. Determination of ammonia In: A practical handbook of seawater analysis, 2nd eds. Fishery Research Board of Canada. Alger Press Ltd., Ottawa, Canada, 87. 

  49. Tzompa-Sosa DA, Yi L, Van Valenberg HJF and Lakemond CMM. 2019. Four insect oils as food ingredient: physical and chemical characterisation of insect oils obtained by an aqueous oil extraction. J Insects Food Feed 5, 279-292. https://doi.org/10.3920/JIFF2018.0020. 

  50. Tzuc JT, Escalante DR, Herrera RR, Cortes GG and Ortiz MLA. 2014. Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp Litopenaeus vannamei. Springerplus 3, 280. https://doi.org/10.1186/2193-1801-3-280. 

  51. Vargas-Abundez AJ, Randazzo B, Foddai M, Sanchini L, Truzzi C, Giorgini E and Olivotto I. 2019. Insect meal based diets for clownfish: Biometric, histological, spectroscopic, biochemical and molecular implications. Aquaculture 498, 1-11. https://doi.org/10.1016/j.aquaculture.2018.08.018. 

  52. Wu S, Zhang F, Huang Z, Liu H, Xie C, Zhang J and Qiao S. 2012. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 35, 225-230. https://doi.org/10.1016/j.peptides.2012.03.030. 

  53. Xiao X, Jin P, Zheng L, Cai M, Yu Z, Yu J and Zhang J. 2018. Effects of black soldier fly Hermetia illucens larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish Pelteobagrus fulvidraco. Aquac Res 49, 1569-1577. https://doi.org/10.1111/are.13611. 

  54. Yang CC, Lu CL, Chen S, Liao WL and Chen SN. 2015. Immune gene expression for diverse haemocytes derived from pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 44, 265-271. https://doi.org/10.1016/j.fsi.2015.02.001. 

  55. Zhang SP, Li JF, Wu XC, Zhong WJ, Xian JA, Liao SA and Wang AL. 2013. Effects of different dietary lipid level on the growth, survival and immune-relating genes expression in Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 34, 1131-1138. https://doi.org/10.1016/j.fsi.2013.01.016. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로