$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

APEX-paddy 모델을 활용한 SSPs 시나리오에 따른 논 필요수량 변동 평가
Assessing Future Water Demand for Irrigating Paddy Rice under Shared Socioeconomic Pathways (SSPs) Scenario Using the APEX-Paddy Model 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.63 no.6, 2021년, pp.1 - 16  

최순군 (Climate Change Assessment Division, National Institute of Agricultural Sciences) ,  조재필 (Convergence Center for Watershed Management, Integrated Watershed Management Institute) ,  정재학 (Texas A&M AgriLife Research) ,  김민경 (Climate Change Assessment Division, National Institute of Agricultural Sciences) ,  엽소진 (Climate Change Assessment Division, National Institute of Agricultural Sciences) ,  조세라 (Climate Change Assessment Division, National Institute of Agricultural Sciences) ,  오수 당콰 에릭 (Council for Scientific and Industrial Research (CSIR) - Crops Research Institute) ,  방정환 (Climate Change Assessment Division, National Institute of Agricultural Sciences)

Abstract AI-Helper 아이콘AI-Helper

Global warming due to climate change is expected to significantly affect the hydrological cycle of agriculture. Therefore, in order to predict the magnitude of climate impact on agricultural water resources in the future, it is necessary to estimate the water demand for irrigation as the climate cha...

주제어

표/그림 (14)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 최근 IPCC 6차 보고서에 SSPs (Shared Socioeconomic Pathways, 공통사회경제경로) 시나리오가 채택되었으나 논벼 재배지를 대상으로 다중 GCM (General Circulation Model) 자료를 활용하여 논 필요수량 변화를 평가한 연구는 수행되지 않았다. 따라서 본 연구는 김제 지역을 대상으로 APEX-Paddy(Agricultural Policy and Environmental eXtender-Paddy) 모델을 활용하여 SSPs 시나리오에 따른 논 필요수량의 변화를 다중 GCM 앙상블 (multi GCM ensemble)을 통해 예측하고자 하였다.
  • 본 연구에서는 김제 논벼 재배지를 대상으로 IPCC 6차 보고서에 채택된 SSP 시나리오에 따른 미래 필요수량의 변화를 평가하고자 하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (60)

  1. Ayars, J. E., E. W. Christen, R. W. Soppe, and W. S. Meyer, 2006. The resource potential of in-situ shallow ground water use in irrigated agriculture: a review. Irrigation Science 24(3): 147-160. doi:10.1007/s00271-005-0003-y. 

  2. Boucher, O., S. Denvil, G. Levavasseur, A. Cozic, A. Caubel, M. A. Foujols, Y. Meurdesoif, P. Cadule, M. Devilliers, E. Dupont, and T. Lurton, 2019. IPSL IPSLCM6A-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1532. 

  3. Cho, J. P., J. U. Kim, S. K. Choi, S. W. Hwang, and H. C. Jung, 2020. Variability analysis of climate extreme index using downscaled multi-models and grid-based CMIP5 climate change scenario data. Journal of Climate Change Research 11(2): 123-132 (in Korean). doi:10.15531/KSCCR.2020.11.2.123. 

  4. Cho, J., W. Cho, and I. Jung, 2018. rSQM: Statistical downscaling toolkit for climate change scenario using nonparametric quantile mapping. Available online: cran. r-project.org/web/packages/rSQM/index.html (accessed on 25 August 2021). 

  5. Choi, S. K., 2019. APEX-Paddy model development and climate change impact assessment for paddy rice. Ph.D. Thesis, Seoul National University, South Korea. (in Korean) 

  6. Choi, S. K., J. Jeong, J. Cho, S. O. Hur, D. Choi, and M. K. Kim, 2018. Assessing the climate change impacts on paddy rice evapotranspiration considering uncertainty. Journal of Climate Change Research 9: 143-156 (in Korean). doi:10.15531/KSCCR.2018.9.2.143. 

  7. Choi, S. K., J. Jeong, S. J. Yeob, M. Kim, J. H. Kim, and M. K. Kim, 2020. Evaluating changes and uncertainty of nitrogen load from rice paddy according to the climate change scenario multi-model ensemble. Journal of The Korean Society of Agricultural Engineers, 62(5): 47-62 (in Korean). doi:10.5389/KSAE.2020.62.5.047. 

  8. Choi, S. K., M. K. Kim, J. Jeong, D. Choi, and S. O. Hur, 2017. Estimation of crop yield and evapotranspiration in paddy rice with climate change using APEX-paddy model. Journal of The Korean Society of Agricultural Engineers ,59(4): 27-42 (in Korean). doi:10.5389/KSAE.2017.59.4.027. 

  9. Chung, S. O., 2010. Simulating evapotranspiration and yield response of rice to climate change using FAO-AquaCrop. Journal of the Korean Society of Agricultural Engineers, 52(3): 57-64 (in Korean). doi:10.5389/KSAE.2010.52.3.057. 

  10. Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, M. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grunwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala, and R. Valentini, 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533. doi:10.1038/nature03972. 

  11. Dix, M., D. Bi, P. Dobrohotoff, R. Fiedler, I. Harman, R. Law, C. Mackallah, S. Marsland, S. O'Farrell, H. Rashid, J. Srbinovsky, A. Sullivan, C. Trenham, P. Vohralik, I. Watterson, G. Williams, M. Woodhouse, R. Bodman, F. B. Dias, C. Domingues, N. Hannah, A. Heerdegen, A. Savita, S. Wal es, C. Al l en, K. Druken, B. Evans, C. Richards, S. M. Ridzwan, D. Roberts, J. Smillie, K. Snow, M. Ward, and R. Yang, 2019. CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP SSP245 & SSP585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.4321. 

  12. Doll, P., 2002. Impact of climate change and variability on irrigation requirements: a global perspective. Climatic Change 54(3): 269-293. doi:10.1023/A:1016124032231. 

  13. Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000. Climate extremes: observations, modeling, and impacts. Science 289(5487): 2068-2074. doi:10.1126/science.289.5487.2068. 

  14. Elliott, J., D. Deryng, C. Muller, K. Frieler, M. Konzmann, D. Gerten, M. Glotter, M. Florke, Y. Wada, N. Best, S. Eisner, B. M. Fekete, C. Folberth, I. Foster, S. N. Gosling, I. Haddeland, N. Khabarov, F. Ludwig, Y. Masaki, S. Olin, C. Rosenzweig, A. C. Ruane, Y. Satoh, E. Schmid, T. Stacke, Q. Tang, and D. Wisser, 2014. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences 111(9): 3239-3244. doi:10.1073/pnas.1222474110. 

  15. Fischer, G., F. N. Tubiello, H. Van Velthuizen, and D. A. Wiberg, 2007. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990-2080. Technological Forecasting and Social Change 74(7): 1083-1107. doi:10.1016/j.techfore.2006.05.021. 

  16. Good, P., A. Sellar, Y. Tang, S. Rumbold, R. Ellis, D. Kelley, T. Kuhlbrodt, and J. Walton, 2019. MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1567. 

  17. Gornall, J., R. Betts, E. Burke, R. Clark, J. Camp, K. Willett, and A. Wiltshire, 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1554): 2973-2989. doi:10.1098/rstb.2010.0158. 

  18. Hong, E. M., J. Y. Choi, S. H. Lee, S. H. Yoo, and M. S. Kang, 2009. Estimation of paddy rice evapotranspiration considering climate change using LARS-WG. Journal of the Korean Society of Agricultural Engineers 51(3): 25-35 (in Korean). doi:10.5389/KSAE.2009.51.3.025. 

  19. Hur, S. O., S. Choi, S. Yeop, S. C. Hong, and D. Choi, 2019. Relationship assessment on amount of irrigation water & productivity of rice by production function. Korean Journal of Environmental Agriculture 38(3): 133-138 (in Korean). doi:10.5338/KJEA.2019.38.3.23. 

  20. Jang, S. S., S. R. Ahn, H. K. Joh, and S. J. Kim, 2015. Assessment of climate change impact on Imha-dam watershed hydrologic cycle under RCP scenarios. Journal of the Korean Association of Geographic Information Studies 18(1): 156-169 (in Korean). doi:10.11108/kagis.2015.18.1.156. 

  21. John, J. G., C. Blanton, C. McHugh, A. Radhakrishnan, K. Rand, H. Vahlenkamp, C. Wilson, N. T. Zadeh, J. P. Dunne, R. Dussin, L. W. Horowitz, J. P. Krasting, P. Lin, S. Malyshev, V. Naik, J. Ploshay, E. Shevliakova, L. Silvers, C. Stock, M. Winton, and Y. Zeng, 2018. NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1414. 

  22. Kamruzzaman, M., S. Hwang, S. K. Choi, J. Cho, I. Song, H. Jeong, J. H. Song, T. Jang, and S. H. Yoo, 2020. Prediction of the effects of management practices on discharge and mineral nitrogen yield from paddy fields under future climate using APEX-paddy model. Agricultural Water Management 241: 106345. doi:10.1016/j.agwat.2020.106345. 

  23. Kim, M. H., S. K. Choi, J. P. Cho, M. K. Kim, J. U. Eo, J. H. Bang, and J. M. Seong, 2021. Report on the climate change impact and vulnerability assessment on Agricultural environment and ecology. Phase I (2016-2020). National Institute of Agricultural Sciences, Wanju, Korea. (in Korean) 

  24. Kim, U. T., D. R. Lee, and C. S. Yoo, 2004. Effects of climate change on the streamflow for the Daechung dam watershed. Journal of Korea Water Resources Association 37(4): 305-314 (in Korean). doi:10.3741/JKWRA.2004.37.4.305. 

  25. Lee, T. S., J. Y. Choi, S. H. Yoo, S. H. Lee, and Y. G. Oh, 2012. Analyzing consumptive use of water and yields of paddy rice by climate change. Journal of the Korean Society of Agricultural Engineers 54(1): 47-54 (in Korean). doi:10.5389/KSAE.2012.54.1.047. 

  26. Li, J., L. Fei, S. Li, C. Xue, Z. Shi, and R. Hinkelmann, 2020. Development of "water-suitable" agriculture based on a statistical analysis of factors affecting irrigation water demand. Science of The Total Environment 744: 140986. doi:10.1016/j.scitotenv.2020.140986. 

  27. Marshall, E., M. Aillery, S. Malcolm, and R. Williams, 2015. Agricultural production under climate change: the potential impacts of shifting regional water balances in the United States. American Journal of Agricultural Economics 97(2): 568-588. doi:10.1093/ajae/aau122. 

  28. Mera, R. J., D. Niyogi, G. S. Buol, G. G. Wilkerson, and F. H. Semazzi, 2006. Potential individual versus simultaneous climate change effects on soybean (C 3 ) and maize (C4) crops: An agrotechnology model based study. Global and Planetary Change 54(1-2): 163-182. doi:10.1016/j.gloplacha.2005.11.003. 

  29. Min, S. H., K. M. Shim, Y. S. Kim, M. P. Jung, S. C. Kim, and K. H. So, 2013. Seasonal variation of carbon dioxide and energy fluxes during the rice cropping season at rice-barley double cropping paddy field of Gimje. Korean Journal of Agricultural and Forest Meteorology 15(4): 273-281 (in Korean). doi:10.5532/KJAFM.2013.15.4.273. 

  30. Ministry of Environment (ME), 2020. Water and Future. Ministry of Environment. (in Korean) 

  31. Miyazaki, N., K. Kamewada, and S. Iwasaki, 2005. Quality changes of agricultural water passing through paddy fields. Bulletin of the Tochigi Prefectural Agricultural Experiment Station 55: 45-55. 

  32. Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3): 885-900. doi:10.13031/2013.23153. 

  33. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams, 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute. 

  34. O'Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. Van Vuuren, 2014. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122(3): 387-400. doi:10.1007/s10584-013-0905-2. 

  35. Rosenberg, N. J., B. A. Kimball, P. Martin, and C. F. Cooper, 1990. From climate and CO2 enrichment to evapotranspiration. Climate Change and US Water Resources 151-175. 

  36. Sakaguchi, A., S. Eguchi, T. Kato, M. Kasuya, K. Ono, A. Miyata, and N. Tase, 2014. Development and evaluation of a paddy module for improving hydrological simulation in SWAT. Agricultural Water Management 137: 116-122. doi:10.1016/j.agwat.2014.01.009. 

  37. Schupfner, M., K. H. Wieners, F. Wachsmann, C. Steger, M. Bittner, J. Jungclaus, and E. Roeckner, 2019. DKRZ MPI-ESM1.2-HR model output prepared for CMIP6 ScenarioMIP SSP245 & SSP585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.4398. 

  38. Seferian, R., 2019. CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1395. 

  39. Seland, O., M. Bentsen, D. J. L. Olivie, T. Toniazzo, A. Gjermundsen, L. S. Graff, J. B. Debernard, A. K. Gupta, Y. He, A. Kirkevag, J. Schwinger, J. Tjiputra, K. S. Aas, I. Bethke, Y. Fan, J. Griesfeller, A. Grini, C. Guo, M. IIicak, I. H. H. Karset, O. A. Landgren, J. Liakka, K. O. Moseid, A. Nummelin, C. Spensberger, H. Tang, Z. Zhang, C. Heinze, T. Iversen, and M. Schulz, 2019. NCC NorESM2-LM model output prepration for CMIP6 ScenerioMIP SSP245 & SSP585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.8253. 

  40. Shiogama, H., M. Abe, and H. Tatebe, 2019. MIROC MIROC6 model output prepared for CMIP6 scenarioMIP SSP245 & 585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.5746. 

  41. Song, J. H., I. Song, J. T. Kim, and M. S. Kang, 2015. Simulation of agricultural water supply considering yearly variation of irrigation efficiency. Journal of Korea Water Resources Association 48(6): 425-438 (in Korean). doi:10.3741/JKWRA.2015.48.6.425. 

  42. Stockle, C. O., J. R. Williams, N. J. Rosenberg, and C. A. Jones, 1992. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I-Modification of the EPIC model for climate change analysis. Agricultural Systems 38(3): 225-238. doi:10.1016/0308-521X(92)90067-X. 

  43. Swart, N. C., J. N. S. Cole, V. V. Kharin, M. Lazare, J. F. Scinocca, N. P. Gillett, J. Anstey, V. Arora, J. R. Christian, Y. Jiao, W. G. Lee, F. Majaess, O. A. Saenko, C. Seiler, C. Seinen, A. Shao, L. Solheim, K. von Salzen, D. Yang, B. Winter, and M. Sigmond, 2019. CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1317. 

  44. Tachiiri, K., M. Abe, T. Hajima, O. Arakawa, T. Suzuki, Y. Komuro, K. Ogochi, M. Watanabe, A. Yamamoto, H. Tatebe, M. A. Noguchi, R. Ohgaito, A. Ito, D. Yamazaki, A. Ito, K. Takata, S. Watanabe, and M. Kawamiya, 2019. MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP ssp585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.5770. 

  45. Tao, F., and Z. Zhang, 2011. Impacts of climate change as a function of global mean temperature: maize productivity and water use in China. Climatic Change 105(3-4): 409-432. doi:10.1007/s10584-010-9883-9. 

  46. The University of Melbourne, 2021. Greenhouse Gas Factsheets. Available online: https://greenhousegases.science.unimelb.edu.au (accessed on 25 August 2021). 

  47. Van Vuuren, D. P., E. Kriegler, B. C. O'Neill, K. L. Ebi, K. Riahi, T. R. Carter, J. Edmonds, S. Hallegatte, T. Kram, R. Mathur, and H. Winkler, 2014. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122(3): 373-386. doi:10.1007/s10584-013-0906-1. 

  48. Voldoire, A., 2019. CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1384. 

  49. Volodin, E., E. Mortikov, A. Gritsun, V. Lykossov, V. Galin, N. Diansky, A. Gusev, S. Kostrykin, N. Iakovlev, A. Shestakova, and S. Emelina, 2019a. INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.12321. 

  50. Volodin, E., E. Mortikov, A. Gritsun, V. Lykossov, V. Galin, N. Diansky, A. Gusev, S. Kostrykin, N. Iakovlev, A. Shestakova, and S. Emelina, 2019b. INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.12322. 

  51. Wada, Y., D. Wisser, S. Eisner, M. Florke, D. Gerten, I. Haddeland, N. Hanasaki, Y. Masaki, F. T. Portmann, T. Stacke, Z. Tessler, and J. Schewe, 2013. Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysical Research Letters 40(17): 4626-4632. doi:10.1002/grl.50686. 

  52. Wieners, K. H., M. Giorgetta, J. Jungclaus, C. Reick, M. Esch, M. Bittner, V. Gayler, H. Haak, P. de Vrese, T. Raddatz, T. Mauritsen, J. S. von Storch, J. Behrens, V. Brovkin, M. Claussen, T. Crueger, I. Fast, S. Fiedler, S. Hagemann, C. Hohenegger, T. Jahns, S. Kloster, S. Kinne, G. Lasslop, L. Kornblueh, J. Marotzke, D. Matei, K. Meraner, U. Mikolajewicz, K. Modali, W. Muller, J. Nabel, D. Notz, K. Peters-von Gehlen, R. Pincus, H. Pohlmann, J. Pongratz, S. Rast, H. Schmidt, R. Schnur, U. Schulzweida, K. Six, B. Stevens, A. Voigt, and E. Roeckner, 2019. MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.793. 

  53. Williams, J. R., and R. C. Izaurralde, 2010. The APEX model. In Watershed models, 1st ed., CRC Press, Florida, USA, pp. 461-506. 

  54. Williams, J. R., R. C. Izaurralde, C. Williams, and E. M. Steglich, 2015. Agricultural policy/environmental extender model theoretical documentation version 0806. Texas A&M Blackland Research Center Temple. 

  55. Yoo, S. H., 2000. Soil Encyclopedia, Seoul National University Press, Seoul, South Korea. (in Korean) 

  56. Yoo, S. H., J. Y. Choi, S. H. Lee, Y. G. Oh, and N. Y. Park, 2012. The impacts of climate change on paddy water demand and unit duty of water using high-resolution climate scenarios. Journal of the Korean Society of Agricultural Engineers 54(2): 15-26 (in Korean). doi:10.5389/KSAE.2012.54.2.015. 

  57. Yoo, S. H., T. Kim, S. H. Lee, and J. Y. Choi, 2015. Trend analysis of projected climate data based on CMIP5 GCMs for climate change impact assessment on agricultural water resources. Journal of the Korean Society of Agricultural Engineers 57(5): 69-80 (in Korean). doi:10.5389/KSAE.2015.57.5.069. 

  58. Yukimoto, S., T. Koshiro, H. Kawai, N. Oshima, K. Yoshida, S. Urakawa, H. Tsujino, M. Deushi, T. Tanaka, M. Hosaka, H. Yoshimura, E. Shindo, R. Mizuta, M. Ishii, A. Obata, and Y. Adachi, 2019. MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.638. 

  59. Yun, D. K., S. O. Chung, and S. J. Kim, 2011. Climate change impacts on paddy water requirement. Journal of the Korean Society of Agricultural Engineers 53(4): 39-47 (in Korean). doi:10.5389/KSAE.2011.53.4.037. 

  60. Ziehn, T., M. A. Chamberl ain, R. M. Law, A. Lenton, R. W. Bodman, M. Dix, L. Stevens, Y. P. Wang, and J. Srbinovsky, 2020. The Australian Earth System Model : ACCESS-EMS1-5. Journal of Southern Hemisphere Earth Systems Science 70(1) : 193-214. doi : 10.1071/ES19035. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로