최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ETRI journal, v.43 no.6, 2021년, pp.1049 - 1057
Hwang, Taewook (Computer Science & Engineering, ChungNam National University) , Jung, Sangkeun (Computer Science & Engineering, ChungNam National University) , Roh, Yoon-Hyung (Language Intelligence Research Section, Electronics and Telecommunications Research Institute)
Automatic spacing in Korean is used to correct spacing units in a given input sentence. The demand for automatic spacing has been increasing owing to frequent incorrect spacing in recent media, such as the Internet and mobile networks. Therefore, herein, we propose a transformer encoder that reads a...
H.-S. Woo, A study on property and application of word spacing in Korean, J. North-East Asian Cult. 51 (2017), 73-94.
H. Hwang and C. Lee, Automatic Korean word spacing using deep learning, in Proc. Korea Comput. Congr. (Jeju, South korea), June 2016, pp. 738-740.
S.-W. Kim and S.-P. Choi, Research on joint models for Korean word spacing and POS (part-of-speech) tagging based on bidirectional LSTMCRF, J. Korean Inst. Inform. Sci. Eng. 45 (2018), no. 8, 792-800.
C. Lee et al., Joint models for Korean word spacing and POS tagging using structural SVM, J. KIISE Softw. Appl. 40 (2013), no. 12, 826-832.
A. Vaswani et al., Attention is all you need, in Proc. Conf. Neural Inf. Process. Syst. (NIPS 2017), (Long Beach, CA, USA), Dec. 2017, pp. 5998-6008.
J. Devlin et al., Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint, CoRR, 2018, arXiv: 1810.04805.
K.-H. Park et al., Bert for Korean natural language processing: Named entity tagging, sentiment analysis, dependency parsing and semantic role labeling, in Proc. KIISE (Jeju, South Korea), June 2019, pp. 584-586.
S.-S. Kang, Eojeol-block bidirectional algorithm for automatic word spacing of Hangul sentences, J. KIISE: Softw. Appl. 27 (2000), no. 4, 441-447.
K. Shim, Automated word-segmentation for Korean usingmutual information of syllables, J. Korea Inf. Sci. Soc. 9 (1996), 991-1000.
S.-B. Park,Y.-S. Tae, and S.-Y. Park, Self-organizing n-grammodel for automatic word spacing, in Proc. Int. Conf. Comput. Linguistics & Annu. Meet. ACL (Sydney, Australia), July 2006, pp. 633-640.
C.-K. Lee and H.-K. Kim, Automatic Korean word spacing using structural SVM, in Proc. Korea Comput. Congr. (Jeju, South Korea), June 2012, pp. 270-272.
C. Lee and H. Kim, Automatic Korean word spacing using Pegasos algorithm, Inform. Process. Manag. 49 (2013), no. 1, 370-379.
J.-H. Choi, P.-M. Ryu, and H.-J. Oh, Overview of automatic spacing and compound noun decomposition: 2018 Korean natural language processing contest, in Proc. Annu. Conf. Hum. Lang. Technol. (Seoul, South Korea), Oct. 2018, pp. 193-196.
H. Kim and H. Kim, Effective integration of automatic word spacing and morphological analysis in Korean, in Proc. IEEE Int. Conf. Big Data Smart Comput. (BIGCOMP), (Busan, South Korea), Feb. 2020, pp. 275-278.
S. Kim, G. Choi, and H. Kim, Reliable automatic word spacing using a space insertion and correction model based on neural networks in Korean, Inf. Process. Manag. 56 (2019), no. 3, 1046-1052.
C. Park, H. Kim, and C. Lee, Korean morphological analysis and part-of-speech tagging with LSTM-CRF based on BERT, in Proc. Annu. Conf. Hum. Cogn. Lang. Technol. (Daejeon, South Korea), Oct. 2019, pp. 34-36.
C. Lee et al., Korean Semantic Role Labeling with BERT, J. KIISE. 47 (2020), 1021-1026, http://www.dbpia.co.kr/journal/articleDetail?nodeIdNODE10487830
C. Park et al., Korean dependency parsing with BERT, in Proc. Korea Comput. Congr. (Jeju, South Korea), June 2019, pp. 530-532, http://www.dbpia.co.kr/journal/articleDetail?nodeIdNODE08763243
C. Park et al., Korean end-to-end neural coreference resolution with BERT, J. KIISE. 47 (2020), 942-947, http://www.dbpia.co.kr/journal/articleDetail?nodeIdNODE10475010
K. Clark et al., Electra: Pre-training text encoders as discriminators rather than generators, arXiv preprint, CoRR, 2020, arXiv: 2003.10555.
Z. Huang,W. Xu, and K. Yu, Bidirectional LSTM-CRF models for sequence tagging, arXiv preprint, CoRR, 2015, arXiv: 1508.01991.
J. Park, Koelectra: Pretrained electra model for Korean, GitHub, 2020, https://github.com/monologg/KoELECTRA
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.