$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] LNOI 포토닉스의 기술 동향
LNOI Photonics Technology Trends 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.36 no.3, 2021년, pp.41 - 52  

박재규 (광융합부품연구실) ,  한상필 (광융합부품연구실) ,  김성일 (광융합부품연구실) ,  송민협 (광융합부품연구실) ,  김기수 (광융합부품연구실)

Abstract AI-Helper 아이콘AI-Helper

Recently, LNOI photonics technology has attracted attention as a photonics platform capable of integrating ultra-high-speed, low power consumption, and high nonlinearity optical devices, as it is possible to manufacture LiNbO3 optical waveguides with ultra-low optical loss and a radius of curvature ...

주제어

표/그림 (6)

참고문헌 (64)

  1. Wikipedia, https://ko.wikipedia.org/wiki/%EC%A0%95%EB%B3%B4 

  2. S.J.B. Yoo et al., "Heterogeneous 2D/3D photonic integrated microsystems," Microsyst. Nanoeng., vol. 2, 2016, Article no. 16030. 

  3. G. Gui et al., "6G: Opening new horizons for integration of comfort, security, and intelligence," IEEE Wirel. Commun., vol. 27, no. 5, 2020, pp. 126-132. 

  4. X. Ren et al., "6G: Network visions and requirements for next generation optical networks," in Proc. Int. Conf. Opt. Instrum. Technol., vol. 11435, Beijing, China, Mar. 2020, p. 2114350H. 

  5. M.W. Akhtar et al., "The shift to 6G communications: Vision and requirements," Hum. Cent. Comput. Inf. Sci., vol. 10, 2020, Article no. 53. 

  6. M. Smit et al, "Past, present, and future of InP-based photonic integration," APL Photonics, vol. 4, 2019, Article no. 050901. 

  7. D.J. Blumenthal et al., "Silicon nitride in silicon photonics," Proc. IEEE, vol. 106, no. 12, 2018, pp. 2209-2231. 

  8. R. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quantum Electron.,vol. 12, no. 6, 2006, pp. 1678-1687. 

  9. J. Lin et al., "Advances in on-chip photonic devices based on lithium niobate on insulator," Photon. Res. vol. 8, 2020, pp. 1910-1936. 

  10. http://www.earlyadopter.co.kr/12496 

  11. N.C. Abrams et al., "Silicon photonic 2.5D multi-chip module transceiver for high-performance data centers," J. Light. Technol., vol. 38, no. 13, 2020, pp. 33467-3357. 

  12. N.C. Abrams, "Development of silicon photonic multi chip module transceivers," Ph. D. thesis, Columbia university, NY, USA, 2020. 

  13. D. Buca et al., "GeSn lasers for CMOS integration," in Proc. IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, Dec. 2016, pp. 22.3.1-22.3.4. 

  14. J. Margetis et al., "GeSn-based light sources and photoconductors towards integrated photonics for the mid-infrared," in Proc. IEEE Photonics Society Summer Topical Meeting Series (SUM), San Juan, PR, USA, July 2017, pp. 13-14. 

  15. H. Ito et al., "High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes," IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 4, 2004, pp. 709-727. 

  16. https://www.infinera.com/wp-content/uploads/The-Advantages-of-InP-Photonic-Integration-in-High-Performance-Coherent-Optics-0223-WP-RevB-0121.pdf 

  17. G. Poberaj et al., "Lithium niobate on insulator (LNOI) for micro-photonic devices," Laser Photonics Rev., vol. 6, no. 4, 2012, pp. 488-503. 

  18. Y. Sakashita et al., "Preparation and characterization of LiNbO 3 thin films produced by chemical-vapor deposition," J. Appl. Phys., vol. 77, no. 11, 1995, pp. 5995-5999. 

  19. X. Lansiaux et al., "LiNbO 3 thick films grown on sapphire by using a multistep sputtering process," J. Appl. Phys., vol. 90, no. 10, 2001, pp. 5274-5277. 

  20. Y. Nakata et al., "Fabrication of LiNbO 3 thin films by pulsed laser deposition and investigation of nonlinear properties," Appl. Phys. A: Mater. Sci. Process., vol. 79, no. 4-6, 2004, pp. 1279-1282. 

  21. J. Yoon et al., "Growth of highly textured LiNbO 3 thin film on Si with MgO buffer layer through the sol-gel process," Appl. Phys. Lett., vol. 68, no. 18, 1996, pp. 2523-2525. 

  22. F. Gitmans et al., "Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy," Vacuum, vol. 46, no. 8, 1995, pp. 939-942. 

  23. D. Zhu et al., "Integrated photonics on thin-film lithium niobate," 2021, arXiv: 2102.11956, 2021. 

  24. K. Worhoff et al., "TriPleX: A versatile dielectric photonic platform," Adv. Opt. Technol., vol. 4, no. 2, 2015, pp. 189-207. 

  25. M. Prost et al., "A compact thin-film lithium niobate platform with arrayed waveguide gratings and MMIs," in Proc. OFC, San Diego, CA, USA, Mar. 2018, pp. 1-3. 

  26. C. Wang et al., "Nanophotonic lithium niobate electro-optic modulators," Opt. Express, vol. 26, no. 2, 2018, pp. 1547-1555. 

  27. C. Wang et al., "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, vol. 562, 2018, pp. 101-104. 

  28. K. Luke et al., "Wafer-scale low-loss lithium niobate photonic integrated circuits," Opt. Express, vol. 28, no. 17, 2020, pp. 24452-24458. 

  29. M. Zhang et al., "Monolithic ultra-high-Q lithium niobate microring resonator," Optica, vol. 4, no. 12, 2017, pp. 1536-1537. 

  30. B. Desiatov et al., "Ultra-low-loss integrated visible photonics using thin-film lithium niobate," Optica, vol. 6, no. 3, 2019, pp. 380-384. 

  31. V. Dobrusin et al., "Fabrication method of low-loss large single mode ridge Ti:LiNbO 3 waveguides," Opt. Mater., vol. 29, no. 12, 2007, pp. 1630-1634. 

  32. M. Li et al., "Silicon intensity Mach-Zehnder modulator for single lane 100Gb/s applications," Photonics Res., vol. 6, no. 2, 2018, pp. 109-116. 

  33. G.T. Reed et al., "Silicon optical modulators," Nature Photonics, vol. 4, no. 8, 2010 pp. 518-526. 

  34. J. Ozaki et al., "High-speed modulator for next-generation large-capacity coherent optical networks," NTT Tech. Rev., vol. 16, no. 4, 2018, pp. 1-8. 

  35. S. Lange et al., "100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator," J. Light. Technol., vol. 36, no. 1, 2018, pp. 97-102. 

  36. Y. Ogiso et al., "[011] waveguide stripe direction n-i-p-n heterostructure InP optical modulator," Electron. Lett., vol. 50, no. 9, 2014, pp. 688-690. 

  37. D. Sun et al., "Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications," Light: Sci. Appl., vol. 9, 2020, Article no. 197. 

  38. J. Lin et al., "Advances in on-chip photonic devices based on lithium niobate on insulator," Photon. Res., vol. 8, no. 12, 2020, pp. 1910-1936. 

  39. Y. Qi et al., "Integrated lithium niobate photonics," Nano photonics, vol. 9, no. 6, 2020, pp. 1287-1320. 

  40. C. Wang et al., "Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation," Nat. Commun., vol. 10, 2019, Article no. 978. 

  41. G. Schreiber et al., "Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO 3 waveguides," in Proc. Symp. Integr. Opt., vol. 4277, San Jose, CA, USA, May 2001. 

  42. R. Brinkmann et al., "Erbium-doped single- and double-pass Ti:LiNbO 3 waveguide amplifiers," IEEE J Quantum Electron., vol. 30, no. 10, 1994, pp. 2356-2360. 

  43. C. Huang et al., "980-nm-pumped Er-doped LiNbO 3 waveguide amplifiers: A comparison with 1484-nm pumping," IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, 1996, pp. 367-372. 

  44. D.L. Veasey et al., "Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm," IEEE J. Quantum Electron., vol. 33, no. 10, 1997, pp. 1647-1662. 

  45. W. Sohler et al., "Erbium-doped lthium niobate waveguide lasers," IEICE Trans. Electron., vol. E88-C, 2005, pp. 990-997. 

  46. M. Fleuster et al., "Optical and structural properties of MeV erbium-implanted LiNbO 3 ," J. Appl. Phys., vol. 75, 1994, Article no. 173. 

  47. A. Boes et al., "Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits," Laser Photonics Rev., vol. 12, no. 4, 2018, Article no. 1700256. 

  48. W.K. Chan et al., "Optical coupling of GaAs photodetectors integrated with lithium niobate waveguides," IEEE Photon. Technol. Lett., vol. 2, no. 3, 1990, pp. 194-196. 

  49. A. Yi-Yan et al., "Grafted GaAs detectors on lithium niobate and glass optical waveguides," IEEE Photon. Technol. Lett., vol. 1, no. 11, 1989, pp. 379-380. 

  50. W.K. Chan et al., "GaAs photodetectors integrated with lithium niobate waveguides," IEEE Trans. Electron Devices, vol. 36, no. 11, 1989, pp. 2627-2628. 

  51. M.G. Tanner et al., "A superconducting nanowire single photon detector on lithium niobate," Nanotechnol., vol. 23, 2012, Article no. 505201. 

  52. J.P. Hopker et al., "Towards integrated superconducting detectors on lithium niobate waveguides," in Proc. SPIE Nanosci. Eng., vol. 10358, San Diego, CA, USA, Aug. 2017, Article no. 1035809. 

  53. B. Desiatov et al., "Silicon photodetector for integrated lithium niobate photonics," Appl. Phys. Lett., vol. 115, 2019, Article no. 121108. 

  54. M. He et al., "High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s -1 and beyond," Nat. Photon., vol. 13, 2019, pp. 359-364. 

  55. S. Tanzilli et al., "PPLN waveguide for quantum communication," Eur. Phys. J. D., vol. 18, 2002, pp. 155-160. 

  56. G. Fujii et al., "Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide," Opt. Express, vol. 15, 2007, pp. 12769-12776. 

  57. H. Jin et al., "On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits," Phys. Rev. Lett., vol. 113, 2014, Article no. 103601. 

  58. J.P. Hopker et al., "Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides," APL Photon., vol. 4, 2019, Article no. 056103. 

  59. K.-H. Luo et al., "Nonlinear integrated quantum electro-optic circuits," Sci. Adv., vol. 5, no. 1, 2019, Article no. eaat1451. 

  60. M. Zhang et al., "Electronically programmable photonic molecule," Nat. Photon., vol. 13, 2019, pp. 36-40. 

  61. A. Rao et al., "Compact lithium niobate electrooptic modulators," IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 4, 2018, pp. 1-14. 

  62. T. J. Kippenberg, et al., "Dissipative Kerr solitons in optical microresonators," Sci., vol. 361, no. 6402, 2018, Article no. eaan8083. 

  63. X. Xue et al., "Programmable single-bandpass photonic RF filter based on Kerr comb from a microring," J. Light. Technol., vol. 32, no. 20, 2014, pp. 3557-3565. 

  64. N. Kuse et al., "Frequency-modulated comb LIDAR," APL Photon., vol. 4, 2019, Article no. 106105. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로