$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3전극방식을 활용한 철근 콘크리트의 교류임피던스 측정 시 전기화학 셀저항의 영향
Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System 원문보기

한국구조물진단유지관리공학회 논문집 = Journal of the Korea Institute for Structural Maintenance and Inspection, v.26 no.6, 2022년, pp.82 - 92  

무함마드 알 마스루르 칸 (동아대학교 ICT 융합 해양스마트시티 공학과) ,  김제경 (동아대학교 해양도시건설방재연구소) ,  이정재 (동아대학교 ICT 융합 해양스마트시티 공학과) ,  기성훈 (동아대학교 ICT 융합 해양스마트시티 공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구의 목적은 3전극방식으로 전기화학적 임피던스분광법(EIS)를 활용한 콘크리트 속 철근의 분극저항을 측정할 때 전기화학 셀저항에 따른 인가전압의 변화를 실험적으로 확인하고, 안정적인 측정값을 획득을 위한 실험조건을 찾는 것이다. 본 연구에서는 셀저항을 구성하는 요소 중 콘크리트 건조상태, 전극의 커플링상태(접촉저항) 및 상대전극의 면적을 주요변수 설정하였다. 본 연구에서는 지름 200mm인 정사각형 콘크리트 실험체 중심에 D22 철근이 부분적으로 매입된 실험체를 준비하여, 주요변수의 조합으로 구성된 다양한 실험조건에서 EIS을 수행하였으며 이때 포텐쇼스탯에서 인가된 전압을 측정하였다. 본 연구의 실험결과를 통하여, 3전극 방식으로 콘크리트 속 철근의 부식속도를 측정할 경우, 측정장치의 추종전압보다 측정 시 요구되는 인가전압이 충분히 큰 경우 셀저항의 변화는 EIS 측정에 큰 영향을 주지 않는 것을 확인하였다. 참조전극과 기준전극을 콘크리트 표면에 부착된 상태에서 EIS에서 콘크리트의 건조상태 및 상대전극의 면적에 대한 영향에 비하여 전극과 표면의 접촉저항의 영향이 지배적인 것을 확인하였다. 본 연구의 결과는 해양환경에 노출된 콘크리트와 같이 침지 및 건조 반족 조건에 노출된 콘크리트에서 3전극방식의 EIS 측정으로 철근 부식속도 및 상태평가를 위한 센서 개발에 기본 데이터로 활용될 수 있다.

Abstract AI-Helper 아이콘AI-Helper

This study aims to investigate the effect of total electrochemical cell resistance (TECR) on electrochemical impedance (EI) measurements of reinforced concrete (RC) by electrochemical impedance spectroscopy (EIS) using a three-electrode system. A series of experimental study is performed to measure ...

주제어

표/그림 (14)

참고문헌 (18)

  1. Andrade, C., and Alonso, C. (2004), Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method, Materials and Structures, 37, 623-643. 

  2. Jang, B. S, Cha, H. Y., Ahn, J. H., and Kim, B.S. (2009), Case study of corrosion monitoring sensor for marine RC structure, Spring Conference of Korea Concrete Institute, 263-264. 

  3. Kim, H. S., Lee, C. H., Moon, C. H., and Ahn, T. S. (2008), Application of long-term monitoring sensor for detection of steel corrosion in RC structure under marine environment, Conference of Korean Society of Civil Engineers, 10, 2645-2648. 

  4. Kim, J. K., Kee, S.-H., Futalan, C. M. and Yee, J. J. (2020), Corrosion monitoring of reinforced steel embedded in cement mortar under wet-and-dry cycles by electrochemical impedance spectroscopy, Sensors, 20(1), 199. 

  5. Kho, Y. T., (1999) The fundamentals of Corrosion and Anticorrosion, The Corrosion Science Society of Korea, 3-14. 

  6. Macdonald, D. D. (2006), Reflections on the history of electrochemical impedance spectroscopy, Electrochimica Acta, 51, 1376-1388. 

  7. Martin, M., Gebara, F. H., Strong, T. D., and Brown, R. B. (2009), A fully differential potentiostat, IEEE Sensors Journal, 9(2), 135-142. 

  8. Mehta, P. K. and Monteriro, P. J. M., (2003), Concrete: Microstructure, Properties, and Materials 4th Edition, McGraw Hill, 113-187. 

  9. Montemor, M. F., Simoes, A. M. P., and Ferreira, M. G. S. (2003), Chloride- induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques, Cement and Concrete Composites, 25, 491-502. 

  10. Neville, A. M. (2011), Properties of Concrete 5th edition, Prentice Hall, 483-538. 

  11. Nishikata, A., Zhu, Q., and Tada, E. (2014), Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method, Corrosion Science, 87, 80-88. 

  12. Pacheco-Torgal, F. (2018), Introduction. In Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures, Elsevier, Amsterdam, The Netherlands, 1-12. 

  13. Rodrigues, R., Gaboreau, S., Gance, J. Ignatiadis, I., and Betelu, S. (2021), Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring, Construction and Building Materials, 269, 121240. 

  14. Ribeiro, D.V., and Abrantes, J. C. C. (2016), Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach, Construction and Building Materials, 111, 98-104. 

  15. So, H.-S. (2006), Influence and assessment of corrosion rate of reinforcing bars using the linear polarization resistance technique, Journal of the Architectural Institute of Korea- Structure and Construction, 22(2), 107-114. 

  16. Stern, M. and Geary, A.I. (1957), Electrochemical Polarization: I. A theoretical Analysis of the Shape of Polarization Curves, Journal of the Electrochemical Society, 104(1), 56-63. 

  17. Verma, S. K., Bhadauria, S. S., and Akhtar, S. (2013), Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures, Journal of Construction Engineering, 834572. 

  18. Yadav, A. P., Nishikata, A., and Tsuru, T. (2004), Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness, Corrosion Science, 46, 169-181. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로