$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Exposure to Sublethal Concentrations of Copper Pyrithione Reduces Cholinergic Activity and Induces Oxidative Stress in a Marine Polychaete 원문보기

한국해양생명과학회지 = Journal of marine life science, v.7 no.2, 2022년, pp.113 - 120  

Md. Niamul, Haque (Department of Marine Science, College of Natural Sciences, Incheon National University) ,  Jae-Sung, Rhee (Department of Marine Science, College of Natural Sciences, Incheon National University)

Abstract AI-Helper 아이콘AI-Helper

Despite concerns about the significant toxicity of copper pyrithione (CuPT) at environmental concentrations, effects of CuPT on benthic organisms have received little attention. Here, we analyzed the detrimental effects of CuPT at sublethal concentrations (1/50, 1/20, and 1/10 of the 96 h-LC50 value...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

데이터처리

  • A one-way analysis of variance (ANOVA) followed by a Duncan's multiple range test was used to evaluate significant differences between the control and treated groups
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. Almond KM, Trombetta LD. 2016. The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos. Ecotoxicology 25: 389-398. 

  2. Biscocho D, Cook JG, Long J, Shah N, Leise EM. 2018. GABA is an inhibitory neurotransmitter in the neural circuit regulating metamorphosis in a marine snail. Dev Neurobiol 78: 736-753. 

  3. Bonnard M, Romeo M, Amiard-Triquet C. 2009. Effects of copper on the burrowing behavior of estuarine and coastal invertebrates, the polychaete Nereis diversicolor and the bivalve Scrobicularia plana. Hum Ecol Risk Assess 15: 11-26. 

  4. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. 

  5. Dean HK. 2008. The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Rev Biol Trop 56: 11-38. 

  6. Doose CA, Ranke J, Stock F, Bottin-Weber U, Jastorff B. 2004. Structure-activity relationships of pyrithiones-IPC-81 toxicity tests with the antifouling biocide zinc pyrithione and structural analogs. Green Chem 6: 259-266. 

  7. Dorgan KM, Arwade SR, Jumars PA. 2007. Burrowing in marine muds by crack propagation: kinematics and forces. J Exp Biol 210: 4198-4212. 

  8. Dorgan KM, Arwade SR, Jumars PA. 2008. Worms as wedges: effects of sediment mechanics on burrowing behavior. J Mar Res 66: 219-254. 

  9. Ellman GL, Courtney KD, Andres Jr. V, Feather-Stone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95. 

  10. Eom H-J, Haque MN, Nam S-E, Lee D-H, Rhee J-S. 2019. Effects of sublethal concentrations of the antifouling biocide Sea-Nine on biochemical parameters of the marine polychaete Perinereis aibuhitensis. Comp Biochem Physiol C Toxicol Pharmacol 222: 125-134. 

  11. Fonseca TG, Auguste M, Ribeiro F, Cardoso C, Mestre NC, Abessa DMS, Bebianno MJ. 2018. Environmental relevant levels of the cytotoxic drug cyclophosphamide produce harmful effects in the polychaete Nereis diversicolor. Sci Total Environ 636: 798-809. 

  12. Goka K. 1999. Embryotoxicity of zinc pyrithione, an antidandruff chemical, in fish. Environ Res 81: 81-83. 

  13. Grunnet KS, Dahllof I. 2005. Environmental fate of the antifouling?compound zinc pyrithione in seawater. Environ Toxicol Chem?24: 3001-3006. 

  14. Guthery E, Seal LA, Anderson EL. 2005. Zinc pyrithione in alcohol-based products for skin antisepsis: persistence of antimicrobial?effects. Am J Infect Control 33: 15-22. 

  15. Haque MN, Nam S-E, Eom H-J, Kim S-K, Rhee J-S. 2020. Exposure?to sublethal concentrations of zinc pyrithione inhibits growth?and survival of marine polychaete through induction of oxidative stress and DNA damage. Mar Pollut Bull 156: 111276. 

  16. Kobayashi N, Okamura H. 2002. Effects of new antifouling compounds on the development of sea urchin. Mar Pollut Bull?44: 748-751. 

  17. Lesser MP. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:?253-278. 

  18. Livingstone DR. 2001. Contaminated-stimulated reactive oxygen?species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42: 656-666. 

  19. Lushchak VI. 2011. Environmentally induced oxidative stress in?aquatic animals. Aquat Toxicol 101: 13-30. 

  20. Min B-H, Saravanan M, Nam S-E, Eom H-J, Rhee J-S. 2019.?Waterborne zinc pyrithione modulates immunity, biochemical,?and antioxidant parameters in the blood of olive flounder.?Fish Shellfish Immunol 92: 469-479. 

  21. Mochida K, Ito K, Harino H, Onduka T, Kakuno A, Fujii K. 2008.?Early life-stage toxicity test for copper pyrithione and induction of skeletal anomaly in a teleost, the mummichog?(Fundulus heteroclitus). Environ Toxicol Chem 27: 367-374. 

  22. Nogueira AF, Nunes B. 2021. Acute and chronic effects of diazepam?on the polychaete Hediste diversicolor: Antioxidant, metabolic,?pharmacologic, neurotoxic and behavioural mechanistic traits.?Environ Toxicol Pharmacol 82: 103538. 

  23. Nunes B, Costa M. 2019. Study of the effects of zinc pyrithione in?biochemical parameters of the Polychaeta Hediste diversicolor:?evidences of neurotoxicity at ecologically relevant concentrations. Environ Sci Pollut Res 26: 13551-13559. 

  24. Nunes B. 2011. The use of cholinesterases in ecotoxicology. Rev Environ Contam Toxicol 212: 29-59. 

  25. Reish DJ, Gerlinger TV. 1997. A review of the toxicological studies with polychaetous annelids. Bull Mar Sci 60: 584-607. 

  26. Rhee J-S, Lee Y-M, Hwang D-S, Won E-J, Raisuddin S, Shin K-H, Lee J-S. 2007. Molecular cloning, expression, biochemical characteristics, and biomarker potential of theta class glutathione 𝘚-transferase (GST-T) from the polychaete Neanthes succinea. Aquat Toxicol 83: 104-115. 

  27. Rhee J-S, Won E-J, Kim R-O, Choi B-S, Choi I-Y, Park GS, Shin KH, Lee Y-M, Lee J-S. 2012. The polychaete, Perinereis nuntiaESTs and its use to uncover potential biomarker genes for molecular ecotoxicological studies. Environ Res 112: 48-57. 

  28. Schiff K, Brown J, Diehl D, Greenstein D. 2007. Extent and magnitude of copper contamination in marinas of the San Diego region, California, USA. Mar Pollut Bull 54: 322-328. 

  29. Sheehan D, Foley DM, Dowd CA. 2001. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360: 1-16. 

  30. Sies H. 1997. Oxidative stress: oxidants and antioxidants. Exp Physiol 82: 291-295. 

  31. Thomas KV. 1999. Determination of the antifouling agent zinc pyrithione in water samples by copper chelate formation and high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 833: 105-109. 

  32. Winston GW, Di Giulio RT. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol. 19: 137-161. 

  33. Yebra DM, Kiil S, Johansen KD. 2004. Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50: 75-104.? 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로