$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

다초점 기능을 갖는 그래핀 전극 기반 적외선 프레넬 렌즈
A Graphene-electrode-based Infrared Fresnel Lens with Multifocal Function 원문보기

한국광학회지 = Korean journal of optics and photonics, v.33 no.1, 2022년, pp.28 - 34  

남국현 (청주대학교 에너지.광기술융합학부 광기술에너지융합 전공) ,  이종권 (청주대학교 에너지.광기술융합학부 광기술에너지융합 전공)

초록
AI-Helper 아이콘AI-Helper

그래핀 전극 아래에 놓인 다층 그래핀 존 플레이트로 구성된 적외선 프레넬 렌즈의 초점 성능을 전산모사를 통해 조사한다. 여기서 패턴된 다층 그래핀의 페르미 에너지 준위(EF)는 그 위에 놓인 그래핀 전극에 의해 조절된다. 4 ㎛에서 30 ㎛까지의 광대역 파장에서 유리 기판 위에 놓인 8층 그래핀 존 플레이트와 그래핀 전극의 반사도 대비비에 따른 프레넬 렌즈 효과를 분석하였다. 반사도와 반사도 대비비를 고려한 최적 파장인 8 ㎛ 입사파가 초점거리 240 ㎛인 프레넬 렌즈에 입사 시, 다층 그래핀의 EF가 0.4 eV에서 1.6 eV로 증가함에 따라 초점 세기가 4.3배, 그래핀 층수가 2층에서 8층으로 증가함에 따라 5.8배 강화되었다. 이를 통해 인가된 EF에 따라서 다중 초점(240 ㎛ 및 360 ㎛) 성능을 보이는 그래핀만으로 구성된 IR 프레넬 렌즈 구조를 초박형 렌즈 플랫폼으로 제안한다.

Abstract AI-Helper 아이콘AI-Helper

We study through computational simulation the focal performance of an infrared (IR) Fresnel lens, composed of a multilayer-graphene zone plate formed under a graphene electrode. Here the Fermi level EF of the patterned multilayer graphene is adjusted by the overlying graphene electrode. The Fresnel ...

주제어

표/그림 (4)

참고문헌 (21)

  1. X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, "Graphene-based ultrathin flat lenses," ACS Photonics 2, 200-207 (2015). 

  2. M. Meema, S. Banerjia, A. Majumdera, F. G. Vasquezb, B. Sensale-Rodrigueza, and R. Menona, "Broadband lightweight flat lenses for long-wave infrared imaging," Proc. Natl. Acad. Sci. U. S. A. 116, 21375-21378 (2019). 

  3. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett. 12, 4932-4936 (2012). 

  4. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, "Two-dimensional material nanophotonics," Nat. Photonics 8, 899-907 (2014). 

  5. Y. Zhang, H. An, D. Zhang, G. Cui, and X. Ruan, "Diffraction theory of high numerical aperture subwavelength circular binary phase Fresnel zone plate," Opt. Express 22, 27425-27436 (2014). 

  6. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Mater. 11, 432-435 (2012). 

  7. Y. Fu, W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," J. Opt. Soc. Am. A 25, 238-249 (2008). 

  8. M. Ferstl and A.-M. Frisch, "Static and dynamic Fresnel zone lenses for optical interconnections," J. Mod. Opt. 43, 1451-1462 (1996). 

  9. K. Kodate, E. Tokunaga, Y. Tatuno, J. Chen, and T. Kamiya, "Efficient zone plate array accessor for optoelectronic integrated circuits: design and fabrication," Appl. Opt. 29, 5115-5119 (1990). 

  10. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys. 81, 109-162 (2009). 

  11. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, "Gate-variable optical transitions in graphene," Science 320, 206-209 (2008). 

  12. S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, "Computational modelling of a graphene Fresnel lens on different substrates," RSC Adv. 4, 30050-30058 (2014). 

  13. S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavierd, and A. K. Yetisene, "Graphene nanoribbon based plasmonic Fresnel zone plate lenses," RSC Adv. 7, 16594-16601 (2017). 

  14. S. Park, G. Lee, B. Park, Y. Seo, C. B. Park, Y. T. Chun, C. Joo, J. Rho, J. M. Kim, J. Hone, and S. C. Jun, "Electrically focustuneable ultrathin lens for high-resolution square subpixels," Light Sci. Appl. 9, 98 (2020). 

  15. C. Damgaard-Carstensen, M. Thomaschewski, F. Ding, and S. I. Bozhevolnyi, "Electrical tuning of Fresnel lens in reflection," ACS Photonics 8, 1576-1581 (2021). 

  16. G. W. Hanson, "Dyadic Green's functions and guided surface waves for a surface conductivity," J. Appl. Phys. 103, 064302 (2008). 

  17. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, "Optical spectroscopy of graphene: from the far infrared to the ultraviolet," Solid State Commun. 152, 1341-1349 (2012). 

  18. N. M. R. Peres, "The transport properties of graphene: an introduction," Rev. Mod. Phys. 82, 2673-2700 (2010). 

  19. H. S. Skulason, P. E. Gaskell, and T. Szkopek, "Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers," Nanotechnology 21, 295709 (2010). 

  20. Ansys-Lumerical, "FDTD solutions," https://www.lumerical.com/products/fdtd/ (Accessed date: December 10, 2021). 

  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, USA, 1985), Volume 2. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로