$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

내분비계 교란물질이 신경계에 미치는 영향
Effects of Endocrine Disrupting Chemicals on the Nervous System 원문보기

생명과학회지 = Journal of life science, v.32 no.1, 2022년, pp.70 - 77  

신현승 (부산대학교 자연과학대학 분자생물학과) ,  위재호 (부산대학교 자연과학대학 분자생물학과) ,  이승현 (부산대학교 자연과학대학 분자생물학과) ,  최수민 (부산대학교 자연과학대학 분자생물학과) ,  정의만 (부산대학교 자연과학대학 분자생물학과)

초록
AI-Helper 아이콘AI-Helper

현대사회에서 내분비계 교란물질(Endocrine Disrupting Chemicals)은 다양한 질환을 유발하는 원인 물질로 잘 알려져 있다. 내분비계 교란물질은 플라스틱병 및 용기, 세제, 금속 식품 캔 라이너, 난연제, 식품, 장난감, 화장품 및 살충제를 비롯한 많은 상업용 제품에서 발견된다. 내분비계 교란물질은 호르몬의 작용을 모방하여 인체 내 뇌하수체, 갑상샘, 부신, 난소 등을 포함한 내분비계를 교란해 생식 기능의 저하, 저티록신 혈증 및 암까지 유발할 수 있는 물질로 사료되고 있다. 최근, 신경과학 분야에서 내분비계 교란물질과 신경 질환과의 연관성에 대한 연구가 활발히 진행되고 있으며, 내분비계 교란물질은 신경세포의 증식, 발달, 분화에 부정적인 영향을 미쳐 자폐증, 주의력 결핍 장애를 포함한 신경 발달장애질환과 파킨슨병, 알츠하이머병과 같은 퇴행성 뇌질환을 유발한다는 연구결과가 발표되었다. 하지만 전 세계적으로 내분비계 교란물질은 인간 생활에 편리함을 제공한다는 이유로 계속 사용되고 있다. 이에 각국의 정부에서는 내분비계 교란물질의 노출을 최소화하기 위한 적절한 규제 및 정책 수립이 필요하며, 내분비계 교란물질이 인체에 미치는 정확한 기전 이해가 절실히 필요한 실정이다. 특히, 내분비계 교란물질이 신경계에 미치는 영향에 대한 정확한 기전 연구가 필요하며 전 세계적으로 이들 연구가 활발히 이루어져야 한다고 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Endocrine disrupting chemicals (EDCs) have been attracting significant attention in modern society, owing to the increased incidence rate of various diseases along with population growth. EDCs are found in many commercial products, including some plastic bottles and containers, detergents, liners of...

주제어

표/그림 (2)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 그에 따라 더욱더 활발한 역학조사와 메커니즘 연구가 면밀히 이루어져야 하며 EDCs의 노출에 대한 체계적인 대비책을 마련해야 한다. 따라서 본 총설에서는 신경계 질환과 EDCs와의 상관관계에 대한 연구들을 제시하여 경각심을 일깨우고자 하였고, 내분비계 교란 특성이 보고되고 있는 EDCs의 최신화 된 정보 및 연구동향을 제시하고자 하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (77)

  1. Adgent, M. A. and Rogan, W. J. 2015. Triclosan and prescription antibiotic exposures and enterolactone production in adults. Environ. Res. 142, 66-71. 

  2. Anway, M. D., Cupp, A. S., Uzumcu, M. and Skinner, M. K. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466-1469. 

  3. Axelstad, M., Boberg, J., Vinggaard, A. M., Christiansen, S. and Hass, U. 2013. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. Food Chem. Toxicol. 59, 534-540. 

  4. Barbeau, A., Dallaire, L., Buu, N. T., Poirier, J. and Rucinska, E. 1985. Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in Rana pipiens. Life Sci. 37, 1529-1538. 

  5. Beitz, J. M. 2014. Parkinson's disease: a review. Front. Biosci. (Schol Ed) 6, 65-74. 

  6. Bian, Q., Qian, J., Xu, L., Chen, J., Song, L. and Wang, X. 2006. The toxic effects of 4-tert-Octylphenol on the reproductive system of male rats. Food Chem. Toxicol. 44, 1355-1361. 

  7. Blake, C. A. and Boockfor, F. R. 1997. Chronic administration of the environmental pollutant 4-tert-Octylphenol to adult male rats interferes with the secretion of luteinizing hormone, follicle-stimulating hormone, prolactin, and testosterone. Biol. Reprod. 57, 255-266. 

  8. Boockfor, F. R. and Blake, C. A. 1997. Chronic administration of 4-tert-Octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities. Biol. Reprod. 57, 267-277. 

  9. Bortolotto, V. C., Pinheiro, F. C., Araujo, S. M., Poetini, M. R., Bertolazi, B. S., de Paula, M. T., Meichtry, L. B., de Almeida, F. P., de Freitas Couto, S., Jesse, C. R. and Prigol, M. 2018. Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine. Eur. J. Pharmacol. 822, 78-84. 

  10. Bulun, S. E., Yilmaz, B. D., Sison, C., Miyazaki, K., Bernardi, L., Liu, S., Kohlmeier, A., Yin, P., Milad, M. and Wei, J. 2019. Endometriosis. Endocr. Rev. 40, 1048-1079. 

  11. Calaf, G. M., Ponce-Cusi, R., Aguayo, F., Munoz, J. P. and Bleak, T. C. 2020. Endocrine disruptors from the environment affecting breast cancer. Oncol. Lett. 20, 19-32. 

  12. Catanese, M. C. and Vandenberg, L. N. 2017. Bisphenol S (BPS) Alters maternal behavior and brain in mice exposed during pregnancy/lactation and their daughters. Endocrinology 158, 516-530. 

  13. Colborn, T., vom Saal, F. S. and Soto, A. M. 1993. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 101, 378-384. 

  14. Collins, L. L., Williamson, M. A., Thompson, B. D., Dever, D. P., Gasiewicz, T. A. and Opanashuk, L. A. 2008. 2,3,7,8-Tetracholorodibenzo-p-dioxin exposure disrupts granule neuron precursor maturation in the developing mouse cerebellum. Toxicol. Sci. 103, 125-136. 

  15. Crews, D. and Gore, A. C. 2011. Life imprints: living in a contaminated world. Environ. Health Perspect. 119, 1208-1210. 

  16. Darras, V. M. 2008. Endocrine disrupting polyhalogenated organic pollutants interfere with thyroid hormone signalling in the developing brain. Cerebellum 7, 26-37. 

  17. Davis, D. L., Bradlow, H. L., Wolff, M., Woodruff, T., Hoel, D. G. and Anton-Culver, H. 1993. Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ. Health Perspect. 101, 372-377. 

  18. Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., Zoeller, R. T. and Gore, A. C. 2009. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293-342. 

  19. Dickerson, S. M. and Gore, A. C. 2007. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev. Endocr. Metab. Disord. 8, 143-159. 

  20. Dietert, R. R. 2012. Misregulated inflammation as an outcome of early-life exposure to endocrine-disrupting chemicals. Rev. Environ. Health 27, 117-131. 

  21. Dong, Z., Hu, Z., Zhu, H., Li, N., Zhao, H., Mi, W., Jiang, W., Hu, X. and Ye, L. 2015. Tris-(2,3-dibromopropyl) isocyanurate induces depression-like behaviors and neurotoxicity by oxidative damage and cell apoptosis in vitro and in vivo. J. Toxicol. Sci. 40, 701-709. 

  22. Food and Drug Adminnistration, H. H. S. 2016. Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use. Final rule. Fed. Regist. 81, 61106-61130. 

  23. Garber, K. 2007. Neuroscience. Autism's cause may reside in abnormalities at the synapse. Science 317, 190-191. 

  24. Geschwind, D. H. and Levitt, P. 2007. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103-111. 

  25. Gilbert, M. E., Rovet, J., Chen, Z. and Koibuchi, N. 2012. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology 33, 842-852. 

  26. Gordon, M. D. and Nusse, R. 2006. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429-22433. 

  27. Harrison, P. T., Holmes, P. and Humfrey, C. D. 1997. Reproductive health in humans and wildlife: are adverse trends associated with environmental chemical exposure? Sci. Total Environ. 205, 97-106. 

  28. Hatcher-Martin, J. M., Gearing, M., Steenland, K., Levey, A. I., Miller, G. W. and Pennell, K. D. 2012. Association between polychlorinated biphenyls and Parkinson's disease neuropathology. Neurotoxicology 33, 1298-1304. 

  29. Hu, F., Liang, W., Zhang, L., Wang, H., Li, Z. and Zhou, Y. 2021. Hyperactivity of basolateral amygdala mediates behavioral deficits in mice following exposure to bisphenol A and its analogue alternative. Chemosphere 287, 132044. 

  30. Jang, Y. J., Park, H. R., Kim, T. H., Yang, W. J., Lee, J. J., Choi, S. Y., Oh, S. B., Lee, E., Park, J. H., Kim, H. P., Kim, H. S. and Lee, J. 2012. High dose bisphenol A impairs hippocampal neurogenesis in female mice across generations. Toxicology 296, 73-82. 

  31. Jiao, H., Yan, Z., Ma, Q., Li, X., Jiang, Y., Liu, Y. and Chen, J. 2019. Influence of Xiaoyaosan on depressive-like behaviors in chronic stress-depressed rats through regulating tryptophan metabolism in hippocampus. Neuropsychiatr. Dis. Treat. 15, 21-31. 

  32. Jorgenson, J. L. 2001. Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ. Health Perspect. 109 Suppl 1, 113-139. 

  33. Jurewicz, J., Polanska, K. and Hanke, W. 2013. Exposure to widespread environmental toxicants and children's cognitive development and behavioral problems. Int. J. Occup. Med. Environ. Health 26, 185-204. 

  34. Kajta, M. and Wojtowicz, A. K. 2013. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol. Rep. 65, 1632-1639. 

  35. Kamel, F., Umbach, D. M., Bedlack, R. S., Richards, M., Watson, M., Alavanja, M. C., Blair, A., Hoppin, J. A., Schmidt, S. and Sandler, D. P. 2012. Pesticide exposure and amyotrophic lateral sclerosis. Neurotoxicology 33, 457-462. 

  36. Kanthasamy, A. G., Kitazawa, M., Kanthasamy, A. and Anantharam, V. 2005. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis. Neurotoxicology 26, 701-719. 

  37. Kassotis, C. D., Vandenberg, L. N., Demeneix, B. A., Porta, M., Slama, R. and Trasande, L. 2020. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 8, 719-730. 

  38. Kim, S. K., Lee, H. J., Yang, H., Kim, H. S. and Yoon, Y. D. 2004. Prepubertal exposure to 4-tert-Octylphenol induces apoptosis of testicular germ cells in adult rat. Arch. Androl. 50, 427-441. 

  39. Kitazawa, M., Anantharam, V., Kanthasamy, A. and Kanthasamy, A. G. 2004. Dieldrin promotes proteolytic cleavage of poly(ADP-ribose) polymerase and apoptosis in dopaminergic cells: protective effect of mitochondrial anti-apoptotic protein Bcl-2. Neurotoxicology 25, 589-598. 

  40. Kitazawa, M., Anantharam, V. and Kanthasamy, A. G. 2001. Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells. Free Radic. Biol. Med. 31, 1473-1485. 

  41. Kloas, W., Lutz, I. and Einspanier, R. 1999. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci. Total Environ. 225, 59-68. 

  42. Knez, J. 2013. Endocrine-disrupting chemicals and male reproductive health. Reprod. Biomed. Online 26, 440-448. 

  43. Konjuh, C., Garcia, G., Lopez, L., de Duffard, A. M., Brusco, A. and Duffard, R. 2008. Neonatal hypomyelination by the herbicide 2,4-dichlorophenoxyacetic acid. Chemical and ultrastructural studies in rats. Toxicol. Sci. 104, 332-340. 

  44. Koriem, K. M. M., Arbid, M. S. S. and Gomaa, N. E. 2018. The role of chlorogenic acid supplementation in anemia and mineral disturbances induced by 4-tert-Octylphenol toxicity. J. Diet. Suppl. 15, 55-71. 

  45. Kundakovic, M., Gudsnuk, K., Franks, B., Madrid, J., Miller, R. L., Perera, F. P. and Champagne, F. A. 2013. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc. Natl. Acad. Sci. USA. 110, 9956-9961. 

  46. Latchney, S. E., Lioy, D. T., Henry, E. C., Gasiewicz, T. A., Strathmann, F. G., Mayer-Proschel, M. and Opanashuk, L. A. 2011. Neural precursor cell proliferation is disrupted through activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Stem Cells Dev. 20, 313-326. 

  47. Liang, X., Yin, N., Liang, S., Yang, R., Liu, S., Lu, Y., Jiang, L., Zhou, Q., Jiang, G. and Faiola, F. 2020. Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length. Food Chem. Toxicol. 135, 111015. 

  48. Lim, C. K., Kim, S. K., Ko, D. S., Cho, J. W., Jun, J. H., An, S. Y., Han, J. H., Kim, J. H. and Yoon, Y. D. 2009. Differential cytotoxic effects of mono-(2-ethylhexyl) phthalate on blastomere-derived embryonic stem cells and differentiating neurons. Toxicology 264, 145-154. 

  49. Liu, Y. Y. and Brent, G. A. 2018. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury. Pharmacol. Ther. 186, 176-185. 

  50. Lv, S., Wu, C., Lu, D., Qi, X., Xu, H., Guo, J., Liang, W., Chang, X., Wang, G. and Zhou, Z. 2016. Birth outcome measures and prenatal exposure to 4-tert-Octylphenol. Environ. Pollut. 212, 65-70. 

  51. Mello-da-Silva, C. A. and Fruchtengarten, L. 2005. [Environmental chemical hazards and child health]. J. Pediatr. (Rio J) 81, S205-211. 

  52. Miyazaki, I., Isooka, N., Imafuku, F., Sun, J., Kikuoka, R., Furukawa, C. and Asanuma, M. 2020. Chronic systemic exposure to low-dose Rotenone induced central and peripheral neuropathology and motor deficits in mice: Reproducible animal model of Parkinson's disease. Int. J. Mol. Sci. 21, 

  53. Morgan, M., Deoraj, A., Felty, Q. and Roy, D. 2017. Environmental estrogen-like endocrine disrupting chemicals and breast cancer. Mol. Cell. Endocrinol. 457, 89-102. 

  54. Nair, A., Dureja, P. and Pillai, M. K. 1992. Aldrin and dieldrin residues in human fat, milk and blood serum collected from Delhi. Hum. Exp. Toxicol. 11, 43-45. 

  55. Nickel, S. and Mahringer, A. 2014. The xenoestrogens ethinylestradiol and bisphenol A regulate BCRP at the bloodbrain barrier of rats. Xenobiotica 44, 1046-1054. 

  56. Okada, M., Makino, A., Nakajima, M., Okuyama, S., Furukawa, S. and Furukawa, Y. 2010. Estrogen stimulates proliferation and differentiation of neural stem/progenitor cells through different signal transduction pathways. Int. J. Mol. Sci. 11, 4114-4123. 

  57. Paduch, D. A. 2006. Testicular cancer and male infertility. Curr. Opin. Urol. 16, 419-427. 

  58. Pang, Q., Li, Y., Meng, L., Li, G., Luo, Z. and Fan, R. 2019. Neurotoxicity of BPA, BPS, and BPB for the hippocampal cell line (HT-22): An implication for the replacement of BPA in plastics. Chemosphere 226, 545-552. 

  59. Parron, T., Requena, M., Hernandez, A. F. and Alarcon, R. 2011. Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol. Appl. Pharmacol. 256, 379-385. 

  60. Polanska, K., Jurewicz, J. and Hanke, W. 2013. Review of current evidence on the impact of pesticides, polychlorinated biphenyls and selected metals on attention deficit / hyperactivity disorder in children. Int. J. Occup. Med. Environ. Health 26, 16-38. 

  61. Rattan, S., Zhou, C., Chiang, C., Mahalingam, S., Brehm, E. and Flaws, J. A. 2017. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J. Endocrinol. 233, R109-R129. 

  62. Richardson, J. R., Caudle, W. M., Wang, M., Dean, E. D., Pennell, K. D. and Miller, G. W. 2006. Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease. FASEB J. 20, 1695-1697. 

  63. Rochester, J. R. and Bolden, A. L. 2015. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ. Health Perspect. 123, 643-650. 

  64. Ruan, T., Wang, Y., Wang, C., Wang, P., Fu, J., Yin, Y., Qu, G., Wang, T. and Jiang, G. 2009. Identification and evaluation of a novel heterocyclic brominated flame retardant tris(2,3-dibromopropyl) isocyanurate in environmental matrices near a manufacturing plant in southern China. Environ. Sci. Technol. 43, 3080-3086. 

  65. Ruszkiewicz, J. A., Li, S., Rodriguez, M. B. and Aschner, M. 2017. Is Triclosan a neurotoxic agent? J. Toxicol. Environ. Health B Crit. Rev. 20, 104-117. 

  66. Shutoh, Y., Takeda, M., Ohtsuka, R., Haishima, A., Yamaguchi, S., Fujie, H., Komatsu, Y., Maita, K. and Harada, T. 2009. Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: implication of hormesis-like effects. J. Toxicol. Sci. 34, 469-482. 

  67. Song, C., Kanthasamy, A., Anantharam, V., Sun, F. and Kanthasamy, A. G. 2010. Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol. Pharmacol. 77, 621-632. 

  68. Stevant, I. and Nef, S. 2019. Genetic control of gonadal sex determination and development. Trends Genet. 35, 346-358. 

  69. Sukjamnong, S., Thongkorn, S., Kanlayaprasit, S., Saeliw, T., Hussem, K., Warayanon, W., Hu, V. W., Tencomnao, T. and Sarachana, T. 2020. Prenatal exposure to bisphenol A alters the transcriptome-interactome profiles of genes associated with Alzheimer's disease in the offspring hippocampus. Sci. Rep. 10, 9487. 

  70. Tran, D. N., Jung, E. M., Yoo, Y. M. and Jeung, E. B. 2020. 4-tert-Octylphenol exposure disrupts brain development and subsequent motor, cognition, social, and behavioral functions. Oxid. Med. Cell Longev. 2020, 8875604. 

  71. Tran, D. N., Jung, E. M., Yoo, Y. M., Lee, J. H. and Jeung, E. B. 2020. Perinatal exposure to Triclosan results in abnormal brain development and behavior in mice. Int. J. Mol. Sci. 21, 4009. 

  72. Weisskopf, M. G., Knekt, P., O'Reilly, E. J., Lyytinen, J., Reunanen, A., Laden, F., Altshul, L. and Ascherio, A. 2010. Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology 74, 1055-1061. 

  73. Wuttke, W., Jarry, H. and Seidlova-Wuttke, D. 2010. Definition, classification and mechanism of action of endocrine disrupting chemicals. Hormones (Athens) 9, 9-15. 

  74. Yang, J., Huang, Q., Liu, H., Zhou, X., Huang, Z., Peng, Q. and Liu, C. 2020. 4-Nonylphenol and 4-tert-Octylphenol induce anxiety-related behaviors through alternation of 5-HT receptors and transporters in the prefrontal cortex. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 230, 108701. 

  75. Ye, L., Hu, Z., Wang, H., Zhu, H., Dong, Z., Jiang, W., Zhao, H., Li, N., Mi, W., Wang, W. and Hu, X. 2015. Tris-(2,3-Dibromopropyl) Isocyanurate, a new emerging pollutant, impairs cognition and provokes depression-like behaviors in adult rats. PLoS One 10, e0140281. 

  76. Yin, N., Liang, X., Liang, S., Liang, S., Yang, R., Hu, B., Cheng, Z., Liu, S., Dong, H., Liu, S. and Faiola, F. 2019. Embryonic stem cell- and transcriptomics-based in vitro analyses reveal that bisphenols A, F and S have similar and very complex potential developmental toxicities. Ecotoxicol. Environ. Saf. 176, 330-338. 

  77. Zhou, X., Yang, Z., Luo, Z., Li, H. and Chen, G. 2019. Endocrine disrupting chemicals in wild freshwater fishes: Species, tissues, sizes and human health risks. Environ. Pollut. 244, 462-468. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로