$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

경도별 TPU 필라멘트의 3D 프린팅 압출 온도 조건에 따른 모폴로지 특성
Morphological Characteristics According to the 3D Printing Extrusion Temperature of TPU Filaments for Different Hardnesses

한국섬유공학회지 = Textile science and engineering, v.59 no.1, 2022년, pp.36 - 46  

정임주 (동아대학교 의상섬유학과) ,  신은주 (동아대학교 유기재료고분자공학과) ,  이선희 (동아대학교 의상섬유학과)

Abstract AI-Helper 아이콘AI-Helper

Thermoplastic polyurethane (TPU) is used in various fields because of its excellent elasticity, flexibility, mechanical strength, and shock absorption. In particular, in the fused deposition modeling (FDM), in which layers are extruded by heating and melting thermoplastic materials through a nozzle,...

주제어

참고문헌 (32)

  1. A. K. Mishra, S. Chattopadhyay, and G. B. Nando, "Effect of Modifiers on Morphology and Thermal Properties of Novel Thermoplastic Polyurethane-Peptized Laponite Nanocomposite", J. Appl. Polym. Sci., 2010, 115, 558-569. 

  2. A. Harynska, I. Carayon, P. Kosmela, A. Brillowska- Dabrowska, M. Lapinski, J. Kucinska-Lipka, and H. Janik, "Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering", Materials, 2020, 13, 4457. 

  3. Y. Han and J. Kim, "A Study on the Mechanical Properties of Knit Fabric Using 3D Printing -Focused on PLA, TPU Filament-", J. Fash. Bus., 2018, 22, 93-105. 

  4. J. Jeong, H. Park, Y. Lee, J. Kang, and J. Chun, "Developing Parametric Design Fashion Products Using 3D Printing Technology", Fash Text., 2021, 8, 22. 

  5. S. Kim, H. Seong, Y. Her, and J. Chun, "A Study of the Development and Improvement of Fashion Products Using a FDM Type 3D Printer", Fash Text., 2019, 6, 9. 

  6. J. Chun, "Development of Wearable Fashion Prototypes Using Entry-Level 3D Printers", J. Korean. Soc. Cloth. Text., 2017, 41, 468-486. 

  7. A. Przybytek, I. Gubanska, J. Kucinska-Lipka, and H. Janik, "Polyurethanes as a Potential Medical-Grade Filament for Use in Fused Deposition Modeling 3D Printers - a Brief Review", Fibres Text. Eastern Eur., 2018, 6, 120-125. 

  8. A. Harynska, I. Gubanska, J. Kucinska-Lipka, and H. Janik, "Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology", Polymers, 2018, 10, 1304. 

  9. J. Xiao and Y. Gao, "The Manufacture of 3D Printing of Medical Grade TPU", Prog Addit Manuf., 2017, 2, 117-123. 

  10. L. Rodriguez-Parada, S. Rosa, and P. F. Mayuet, "Influence of 3D-Printed TPU Properties for the Design of Elastic Products", Polymers, 2021, 13, 2519. 

  11. P. Platek, K. Rajkowski, K. Cieplak, M. Sarzynski, J. Malachowski, R. Wozniak, and J. Janiszewski, "Deformation Process of 3D Printed Structures Made from Flexible Material with Different Values of Relative Density", Polyemers, 2020, 12, 2120. 

  12. M. S. Chaudhry and A. Czekanski, "Evaluating FDM Process Parameter Sensitive Mechanical Performance of Elastomers at Various Strain Rates of Loading", Materials, 2020, 13, 3202. 

  13. N. Vidakis, M. Petousis, A. Korlos, E. Velidakis, N, Mountakis, C. Charou, and A. Myftari, "Strain Rate Sensitivity of Polycarbonate and Thermoplastic Polyurethane for Various 3D Printing Temperatures and Layer Heights", Polymers, 2021, 13, 2752. 

  14. X. Lin, J. Gao, J. Wang, R. Wang, M. Gong, L. Zhang, Y. Lu, D. Wang, and L. Zhang, "Desktop Printing of 3D Thermoplastic Polyurethane Parts with Enhanced Mechanical Performance Using Filaments with Varying Stiffness", Addit. Manuf., 2021, 47, 102267. 

  15. B. Arifvianto, T. N. Iman, B. T. Prayoga, R. Dharmastiti, U. A. Salim, M. Mahardika, and S. Suyitno, "Tensile Properties of the FFF-Processed Thermoplastic Polyurethane (TPU) Elastomer", Int. J. Adv. Manuf. Technol., 2021, 117, 1709-1719. 

  16. F. Peng, B. D. Vogt, and M. Cakmak, "Complex Flow and Temperature History during Melt Extrusion in Material Extrusion Additive Manufacturing", Addit. Manuf., 2018, 22, 197-206. 

  17. D. A. Anderegg, H. A. Bryant, D. C. Ruffin, S. M. Skrip Jr, J. J. Fallon, E. L. Gilmer, and M. J. Bortner, "In-Situ Monitoring of Polymer Flow Temperature and Pressure in Extrusion Based Additive Manufacturing", Addit. Manuf., 2019, 26, 76-83. 

  18. C. Ge, S. Wang, W. Zheng, and W. Zhai, "Preparation of Microcellular Thermoplastic Polyurethane (TPU) Foam and Its Tensile Property", Polym. Eng. Sci., 2018, 58, E158-E166. 

  19. I. Jung, H. Kim, and S. Lee, "Charaterizations of 3D Printed Re-entrant Pattern/Aramid Knit Composite Prepared by Various Tilting Angles", Fash. Text., 2021, 8, 44. 

  20. I. Jung and S. Lee, "Effect of Surface Roughness of Fabrics on Tensile Properties of 3D Printing Auxetic Re-entrant Pattern/ Textile Composites", Text. Sci. Eng., 2021, 58, 167-176. 

  21. H, Kim, S. Kabir, and S. Lee, "Mechanical Properties of 3D Printed Re-entrant Pattern/neoprene Composite Textile by Pattern Tilting Angle of Pattern", J. Korean. Soc. Cloth. Text., 2021, 45, 106-122. 

  22. S. Kabir and S. Lee, "Study of Shape Memory and Tensile Property of 3D Printed Sinusoidal Sample/Nylon Composite Focused on Various Thicknesses and Shape Memory Cycles", Polymers, 2020, 12, 1600. 

  23. S. Kabir, H. Kim, and S. Lee, "Physical Property of 3D-Printed Sinusoidal Pattern Using Shape Memory TPU Filament", Text. Res. J., 2020, 90, 2399-2410. 

  24. H. Kim and S. Lee, "Mechanical Properties of 3D Printed Reentrant Pattern with Various Hardness Types of TPU Filament Manufactured through FDM 3D Printing", Text. Sci. Eng., 2020, 57, 166-176. 

  25. S. H. Lee, "Morphology and Properties of Textiles Manufactured by Three-Dimensional Printing Based on Fused Deposition Modeling", Text. Sci. Eng., 2015, 52, 272-279. 

  26. S. Lee, "Evaluation of Mechanical Properties and Washability of 3D Printed Lace/Voil Composite Fabrics Manufactured by FDM 3D Printing Technology", Fashion Text. Res. J., 2018, 20, 353-359. 

  27. S. Lee, "Tensile Properties and Stiffnesses of 3D-Printed Lace/ Voile Composite Fabrics Manufactured by Various Roller Processes", Text. Sci. Eng., 2019, 56, 8-14. 

  28. M. Asensio, V. Costa, A. Nohales, O. Bianchi, and C. M. Gomez, "Tunable Structure and Properties of Segmented Thermoplastic Polyurethanes as a Function of Flexible Segment", Polymers, 2019, 11, 1910. 

  29. P. Kasprzyk, K. Blazek, P. Parcheta, and J. Datta, "Green Thermoplastic Poly(ether-urethane)s - Synthesis, Chemical Structure and Selected Properties Investigation", Polimery, 2020, 65, 672-680. 

  30. P. Kasprzyk and J. Datta, "Effect of Molar Ratio [NCO]/[OH] Groups during Prepolymer Chains Extending Step on the Morphology and Selected Mechanical Properties of Final Bio-Based Thermoplastic Poly(ether-urethane) Materials", Polym. Eng. Sci., 2018, 58, E199-E206. 

  31. S. Charlon, J. L. Boterff, and J. Soulestin, "Fused Filament Fabrication of Polypropylene: Influence of the Bead Temperature on Adhesion and Porosity", Addit. Manuf., 2021, 38, 101838. 

  32. X. Lin, P. Coates, M. Hebda, R. Wang, Y. Lu, and L. Zhang, "Experimental Analysis of the Tensile Property of FFF-printed Elastomers", Polym. Test., 2020, 90, 106687. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로