$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미생물막 형성을 막기 위한 살균 물질 함유 막: 총설
Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review 원문보기

멤브레인 = Membrane Journal, v.32 no.1, 2022년, pp.23 - 32  

손수현 (연세대학교 언더우드학부 생명과학공학과) ,  라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)

초록
AI-Helper 아이콘AI-Helper

세균은 분리막, 식품 포장 필름 및 바이오 의료 기기와 같은 다양한 미생물 막의 표면 위에서 자란다. 미생물 막의 성장은 엑소폴리사카라이드의 복잡한 구조 형성과 밀접한 관련이 있다. 미생물 막이 항균제의 대량 수송의 어려움으로 성장하게 될 경우 항균효과는 급격하게 감소한다. 항균 활동을 활성화하기 위해서 막의 표면은 살균 특성이 있는 기능성 물질들로 변형, 코팅 또는 고정한다. 한 가지 아이디어는 막 표면에 양전하 이온을 도입하는 것이다. 양전하 이온인 4차 암모늄 그룹의 존재는 마그네슘이나 칼슘같이 세균 세포벽에 존재하는 2가 금속이온을 대체할 수 있다. 세포막 파괴의 효능은 표면환경에서 사용 가능한 작용제들의 이동성에 달려있다. 이 리뷰에서는 4차 암모늄 그룹, 헬라민(helamine), 쌍성이온(zwitterion)과 같이 여러 살생물제를 포함하고 있는 막들을 다룬다.

Abstract AI-Helper 아이콘AI-Helper

Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the di...

주제어

참고문헌 (24)

  1. B. Gautam, S. A. Ali, J. T. Chen, and H. H. Yu, "Hybrid "kill and Release" Antibacterial cellulose papers obtained via surface-initiated atom transfer radical polymerization", ACS Appl. Bio Mater., 4, 7893 (2021). 

  2. S. Li, Z. Guo, H. Zhang, X. Li, W. Li, P. Liu, Y. Ren, and X. Li, "ABC triblock copolymers antibacterial materials consisting of fluoropolymer and polyethylene glycol antifouling block and quaternary ammonium salt sterilization block", ACS Appl. Bio Mater., 4, 3166 (2021). 

  3. W. S. Yun, J. W. Rim, and Y. J. Cho, "Restoration of membrane performance for damaged reverse osmosis membranes through in-situ healing", Membr. J., 29, 96 (2019). 

  4. D-E. Kwon and J, Kim, "Forward osmosis membrane to treat effluent from anaerobic fluidized bed bioreactor for wastewater reuse applications", Membr. J., 28, 196 (2018). 

  5. N. M. Justino, D. S. Vicentini, K. Ranjbari, M. Bellier, D. J. Nogueira, W. G. Matias, and F. Perreault, "Nanoparticle-templated polyamide membranes for improved biofouling resistance", Environ. Sci. Nano, 8, 565 (2021). 

  6. C. Liu, A. F. Faria, J. Jackson, Q. He, and J. Ma, "Enhancing the anti-fouling and fouling removal properties of thin-film composite membranes through an intercalated functionalization method", Environ. Sci. Water Res. Technol., 7, 1336 (2021). 

  7. Y. Wang, F. Wang, H. Zhang, B. Yu, H. Cong, and Y. Shen, "Antibacterial material surfaces/interfaces for biomedical applications", Appl. Mater., 25, 101192 (2021). 

  8. J. Yang, X. Zhu, J. Lin, Q. Wang, L. Zhang, N. Yang, L. Lin, J. Zhao, Y. Zhao, and L. Chen, "Integration of a hydrophilic hyperbranched polymer and a quaternary ammonium compound to mitigate membrane biofouling", ACS Applied Polymer Materials, 4, 229 (2021). 

  9. R. Yu, R. Zhu, J. Jiang, R. Liang, X. Liu, and G. Liu, "Mussel-inspired surface functionalization of polyamide microfiltration membrane with zwitterionic silver nanoparticles for efficient anti-biofouling water disinfection", J. Colloid Interface Sci., 598, 302 (2021). 

  10. C. Liu, D. Song, W. Zhang, Q. He, X. Huangfu, S. Sun, Z. Sun, W. Cheng, and J. Ma, "Constructing zwitterionic polymer brush layer to enhance gravity-driven membrane performance by governing biofilm formation", Water Res., 168, 115181 (2020). 

  11. F. Wang, T. Zheng, P. Wang, M. Chen, Z. Wang, H. Jiang, and J. Ma, "Enhanced water permeability and antifouling property of coffee-ring-textured polyamide membranes by in situ incorporation of a zwitterionic metal-organic framework", Environ. Sci. Technol., 55, 5324 (2021). 

  12. X. Yu, Y. Yang, W. Yang, X. Wang, X. Liu, F. Zhou, and Y. Zhao, "One-step zwitterionization and quaternization of thick PDMAEMA layer grafted through subsurface-initiated ATRP for robust antibiofouling and antibacterial coating on PDMS", J. Colloid Interface Sci., 610, 234 (2022). 

  13. M. M. Zhu, Y. Fang, Y. C. Chen, Y. Q. Lei, L. F. Fang, B. K. Zhu, and H. Matsuyama, "Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers", J. Colloid Interface Sci., 584, 225 (2021). 

  14. J. Gao, E. M. White, Q. Liu, and J. Locklin, "Evidence for the phospholipid sponge effect as the biocidal mechanism in surface-bound polyquaternary ammonium coatings with variable cross-linking density", ACS Appl. Mater., Interfaces, 9, 7745 (2017). 

  15. C. K. S. Haresco, M. B. M. Y. Ang, B. T. Doma, S.-H. Huang, and K.-R. Lee, "Performance enhancement of thin-film nanocomposite nanofiltration membranes via embedment of novel polydopamine-sulfobetaine methacrylate nanoparticles", Sep. Purif. Technol., 274, 119022 (2021). 

  16. Y. Ma, Z. Zhang, N. Nitin, and G. Sun, "Integration of photo-induced biocidal and hydrophilic antifouling functions on nanofibrous membranes with demonstrated reduction of biofilm formation", J. Colloid Interface Sci., 578, 779 (2020). 

  17. Y. Si, Z. Zhang, W. Wu, Q. Fu, K. Huang, N. Nitin, B. Ding, and G. Sun, "Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications", Sci. Adv., 4, 1 (2018). 

  18. G. Ye, J. Lee, F. Perreault, and M. Elimelech, "Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated "defending" and "attacking" strategies against biofouling", ACS Appl. Mater. Interfaces, 7, 23069 (2015). 

  19. S. Yi, Y. Zou, S. Sun, F. Dai, Y. Si, and G. Sun, "Rechargeable photoactive silk-derived nanofibrous membranes for degradation of reactive red 195", ACS Sustainable Chem. Eng., 7, 986 (2019). 

  20. R. Bai, Q. Zhang, L. Li, P. Li, Y. J. Wang, O. Simalou, Y. Zhang, G. Gao, and A. Dong, "N-halamine-containing electrospun fibers kill bacteria via a contact/release co-determined antibacterial pathway", ACS Appl. Mater. Interfaces, 8, 31530 (2016). 

  21. Y. Si, J. Li, C. Zhao, Y. Deng, Y. Ma, D. Wang, and G. Sun, "Biocidal and rechargeable N-halamine nanofibrous membranes for highly efficient water disinfection", ACS Biomater. Sci. Eng., 3, 584 (2017). 

  22. G. Li, B. Liu, L. Bai, Z. Shi, X. Tang, J. Wang, H. Liang, Y. Zhang, and B. Van der Bruggen, "Improving the performance of loose nanofiltration membranes by poly-dopamine/zwitterionic polymer coating with hydroxyl radical activation", Sep. Purif. Technol., 238, 116412 (2020). 

  23. C. Liu, J. Lee, J. Ma, and M. Elimelech, "Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer", Environ. Sci. Technol., 51, 2161 (2017). 

  24. X. Zhao, Y. Su, Y. Li, R. Zhang, J. Zhao, and Z. Jiang, "Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances", J. Membr. Sci., 450, 111 (2014). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로