$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

그래핀옥사이드 멤브레인의 기체 및 이온 투과 특성
Intrinsic Permeation Properties of Graphene Oxide Membranes for Gas and Ion Separations 원문보기

멤브레인 = Membrane Journal, v.32 no.1, 2022년, pp.1 - 12  

김효원 (강원대학교 신소재공학부)

초록
AI-Helper 아이콘AI-Helper

그래핀옥사이드는 우수한 물리적 특성 및 가공성으로 멤브레인 소재로 각광받고 있다. 특히, 이론적 예측과 실험적인 접근을 통해 그래핀옥사이드의 원자 수준의 얇은 두께, 뛰어난 기계적 강도, 높은 수준의 내화학성, 기공 생성이 가능한 2차원 구조 또는 기체 확산 유로 생성이 가능한 적층구조 등 멤브레인 소재로서 매우 유리한 특성들을 보유하고 있음이 밝혀졌다. 또한 그래핀옥사이드에서의 분자 투과 거동은 적층된 그래핀옥사이드 사이의 채널 크기에 따라 영향을 받는다는 것이 발견되었다. 그 후, 이러한 특성을 응용하여 그래핀옥사이드를 멤브레인 소재로 활용하기 위해 많은 연구가 집중적으로 진행되고 있다. 본 총설에서는 그래핀옥사이드의 고유 특성을 기반으로 멤브레인 분야로의 응용 가능성에 대하여 논하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Graphene oxide (GO) has been considered as a promising membrane material, because of its easy processability and distinct properties, including controllable pore size distribution and diffusion channels. Particularly, the feasibility has been proposed a number of simulation results and proof-of-conc...

주제어

참고문헌 (65)

  1. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, "Preparation and characterization of graphene oxide paper", Nature, 448, 457-460 (2007). 

  2. W. Gao, "The chemistry of graphene oxide", in Graphene oxide, pp. 61-95, Springer (2015). 

  3. B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers", J. Appl. Polym. Sci., 131 (2014). 

  4. J. Kim, L. J. Cote, F. Kim, W. Yuan, K. S. Shull, and J. Huang, "Graphene oxide sheets at interfaces", J. Am. Chem. Soc., 132, 8180-8186 (2010). 

  5. J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and Kim, S. O., "Graphene oxide liquid crystals", Angew. Chem., 123, 3099-3103 (2011). 

  6. M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S., Noro, T. Yamada, H. Kitagawa, and S. Hayami, "Graphene oxide nanosheet with high proton conductivity", J. Am. Chem. Soc., 135, 8097-8100 (2013). 

  7. S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, "Graphene oxide as a practical solution to high sensitivity gas sensing", J. Phys. Chem. C, 117, 10683-10690 (2013). 

  8. Y. H. Yang, L. Bolling, M. A. Priolo, and J. C. Grunlan, "Super gas barrier and selectivity of graphene oxide polymer multilayer thin films", Adv. Mater., 25, 503-508 (2013). 

  9. S. Eigler and A. Hirsch, "Chemistry with graphene and graphene oxide-challenges for synthetic chemists", Angew. Chem. Int. Ed., 53, 7720-7738 (2014). 

  10. R. R. Amirov, J. Shayimova, Z. Nasirova, and A. M. Dimiev, "Chemistry of graphene oxide. Reactions with transition metal cations", Carbon, 116, 356-365 (2017). 

  11. H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91-95 (2013). 

  12. H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang, and B. D. McCloskey, "Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts", Nature Catalysis, 1, 282-290 (2018). 

  13. R. Nair, H. A. Wup, P. N. Jayatami, L. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335, 442-444 (2012). 

  14. H. W. Kim, H. W. Yoon, B. M. Yoo, J. S. Park, K. L. Gleason, B. D. Freeman, and H. B. Park, "High-performance CO 2 -philic graphene oxide membranes under wet-conditions", Chem. Commun., 50, 13563-13566 (2014). 

  15. R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, "Precise and ultrafast molecular sieving through graphene oxide membranes", Science, 343, 752-754 (2014). 

  16. H. W. Yoon, T. H. Lee, C. M. Doherty, T. H. Choi, J. S. Roh, H. W. Kim, Y. H. Cho, S-H. Do, B. D. Freeman, and H. B. Park, "Origin of CO 2 -philic sorption by graphene oxide layered nanosheets and their derivatives", J. Phys. Chem. Lett., 11, 2356-2362 (2020). 

  17. K. M. Cho, H.-J. Lee, Y. T. Nam, Y-J. Kim, C. Kim, K. M. Kang, C. A. R. Torres, D. W. Kim, and H. T. Jung, "Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons", ACS Applied Materials & Interfaces, 11, 27004-27010 (2019). 

  18. H. Kim, D. W. Kim, V. Vasagar, H. Ha, S. Nazarenko, and C. J. Ellison, "Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold", Adv. Funct. Mater., 28, 1803172 (2018). 

  19. J. H. Kim, Y. Choi, J. Kang, E. Choi, S. E. Choi, O. Kwon, and D. W. Kim, "Scalable fabrication of deoxydenated graphene oxide nanofiltration membrane by continuous slot-die coating", J. Membr. Sci., 612, 118454 (2020). 

  20. Y. Choi, S.-S. Kim, J. H. Kim, J. Kang, E. Choi, S. E. Choi, J. P. Kim, O. Kwon, and D. W. Kim, "Graphene oxide nanoribbon hydrogel: viscoelastic behavior and use as a molecular separation membrane", ACS Nano, 14, 12195-12202 (2020). 

  21. B. C. Brodie, "XIII. On the atomic weight of graphite", Philosophical Transactions of the Royal Society of London, 149, 249-259 (1859). 

  22. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS nano, 4, 4806-4814 (2010). 

  23. J. Chen, B. Yao, C. Li, and G. Shi, "An improved Hummers method for eco-friendly synthesis of graphene oxide", Carbon, 64, 225-229 (2013). 

  24. B. Brodie, "Note sur un nouveau procede pour la purification et la desagregation du graphite", Ann. Chim. Phys., 45, 351-353 (1855). 

  25. G. Bettendorf, "Zur geschichte der endokrinologie und reproduktionsmedizin: 256 biographien und berichte", Springer-Verlag (2013). 

  26. M. Berthelot, "Recherches sur les etats du carbone", Ann. Chim. Phys. 4e serie, 19, 392-426 (1870). 

  27. V. Kohlschutter and P. Haenni, "Zur kenntnis des graphitischen kohlenstoffs und der graphitsaure", Z. Anorg. Allg. Chem., 105, 121-144 (1919). 

  28. U. Hofmann and A. Frenzel, "Quellung von graphit und die bildung von graphitsaure", Ber. Dtsch. Chem. Ges. (A and B Series), 63, 1248-1262 (1930). 

  29. W. S. Hummers Jr. and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339-1339 (1958). 

  30. T. Nakajima, A. Mabuchi, and R. Hagiwara, "A new structure model of graphite oxide", Carbon, 26, 357-361 (1988). 

  31. T. Nakajima and Y. Matsuo, "Formation process and structure of graphite oxide", Carbon, 32, 469-475 (1994). 

  32. D. Hadzi and A. Novak, "Infra-red spectra of graphitic oxide", Trans. Faraday Soc., 51, 1614-1620 (1955). 

  33. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dekany, "Evolution of surface functional groups in a series of progressively oxidized graphite oxides", Chem. Mater., 18, 2740-2749 (2006). 

  34. F. A. de La Cruz and J. Cowley, "Structure of graphitic oxide", Nature, 196, 468-469 (1962). 

  35. L. Staudenmaier, "Verfahren zur darstellung der graphitsaure", Berichte der deutschen chemischen Gesellschaft, 31, 1481-1487 (1898). 

  36. U. Hofmann, A. Frenzel, and E. Csalan, "Die konstitution der graphitsaure und ihre reaktionen", Justus Liebigs Annalen der Chemie, 510, 1-41 (1934). 

  37. G. Ruess, "Uber das graphitoxyhydroxyd (graphitoxyd)", Monatshefte fur Chemie und verwandte Teile anderer Wissenschaften, 76, 381-417 (1947). 

  38. U. Hofmann and R. Holst, "Uber die Saurenatur und die Methylierung von Graphitoxyd", Ber. Dtsch. Chem. Ges. (A and B Series), 72, 754-771 (1939). 

  39. M. Mermoux, Y. Chabre, and A. Rousseau, "FTIR and 13 C NMR study of graphite oxide", Carbon, 29, 469-474 (1991). 

  40. W. Scholz and H. Boehm, "Betrachtungen zur struktur des graphitoxids", Z. Anorg. Allg. Chem., 369, 327-340 (1969). 

  41. W. Cai, R. D. Piner, F. J. Stadermsn, S. J. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stollrt, J. An, D. Chen, and R. S. Ruoff, "Synthesis and solid-state NMR structural characterization of 13 C-labeled graphite oxide", Science, 321, 1815-1817 (2008). 

  42. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets", Nature, 446, 60-63 (2007). 

  43. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene", Nature, 490, 192-200 (2012). 

  44. H. B. Park, "Gas separation membranes", Encyclopedia of Membrane Science and Technology, 1-32 (2013). 

  45. H. B. Park and Y. M. Lee, "Polymeric membrane materials and potential use in gas separation, in Advanced membrane technology and applications", pp. 633-669, John Wiley & Sons, Inc. (2008). 

  46. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393-1411 (2002). 

  47. W. J. Koros, and G. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1-80 (1993). 

  48. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390-400 (2008). 

  49. D. Shekhawat, D. R. Luebke, and H. W. Pennline, "A review of carbon dioxide selective membranes: A topical report", National Energy Technology Laboratory, Pittsburgh, PA, Morgantown (2003). 

  50. M. B. Shiflett and H. C. Foley, "Ultrasonic deposition of high-selectivity nanoporous carbon membranes", Science, 285, 1902-1905 (1999). 

  51. R. M. De Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710-1711 (1998). 

  52. D. M. Sterescu, L. Bolhuis-Versteeg, N. F. A. van der Vegt, D. F. Stamatialis, and M. Wessling, "Novel gas separation membranes containing covalently bonded fullerenes", Macromol. Rapid Commun., 25, 1674-1678 (2004). 

  53. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, "Aligned multiwalled carbon nanotube membranes", Science, 303, 62-65 (2004). 

  54. J. K. Holt, H. G. Park, Y. Wang, M. Staderman, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034-1037 (2006). 

  55. D.-e. Jiang, V. R. Cooper, and S. Dai, "Porous graphene as the ultimate membrane for gas separation", Nano Lett., 9, 4019-4024 (2009). 

  56. S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728-732 (2012). 

  57. H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, B. Yu, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95-98 (2013). 

  58. H. B. Park, H. W. Yoon, and Y. H. Cho, "Graphene oxide membrane for molecular separation", Graphene Oxide: Fundamentals and Applications, 296 (2016). 

  59. O. C. Compton and S. T. Nguyen, "Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials", Small, 6, 711-723 (2010). 

  60. Y. H. Cho, H. W. Kim, H. D. Lee, J. E. Shin, B. M. Yoo, and H. B. Park, "Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited", J. Membr. Sci., 544, 425-435 (2017). 

  61. J. S. Roh, T. H. Choi, T. H. Lee, H. W. Yoon, J. Kim, H. W. Kim, and H. B. Park, "Understanding Gas Transport Behavior through Few-Layer Graphene Oxide Membranes Controlled by Tortuosity and Interlayer Spacing", J. Phys. Chem. Lett., 10, 7725-7731 (2019). 

  62. K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, and W. Jin, "A graphene oxide membrane with highly selective molecular separation of aqueous organic solution", Angew. Chem., 126, 7049-7052 (2014). 

  63. Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification", Adv. Funct. Mater., 23, 3693-3700 (2013). 

  64. D. W. Boukhvalov, M. I. Katsnelson, and Y.-W. Son, "Origin of anomalous water permeation through graphene oxide membrane", Nano Lett., 13(8), 3930-3935 (2013). 

  65. G. M. Geise, H. B. Park, A. C. Saglea, B. D. Freeman, and J. E. McGrath, "Water permeability and water/salt selectivity tradeoff in polymers for desalination", J. Membr. Sci., 369, 130-138 (2011). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로