$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

나방의 성페로몬 감지
Perception of Sex Pheromone in Moth 원문보기

한국응용곤충학회지 = Korean journal of applied entomology, v.61 no.1, 2022년, pp.1 - 14  

박계청 (뉴질랜드 식물식품연구소)

초록
AI-Helper 아이콘AI-Helper

나방은 성페로몬에 대한 통신시스템이 잘 발달되어 있다. 동종의 암컷이 방출하는 성페로몬을 원거리에서 감지하여 암컷을 정확히 찾아가 교미할 수 있도록 하기 위해서, 수컷 나방은 고도로 발달된 성페로몬 감지 시스템을 갖고 있다. 이러한 시스템을 이용해서 수컷 나방은 페로몬 냄새기둥(plume)을 따라 바람을 거슬러 비행하면서 간헐적으로 감지되는 페로몬 냄새가닥(odor filaments)을 추적하는 고정행동양식(stereotypic behavior)을 보인다. 일반적으로 여러 성분으로 구성되는 나방의 암컷 성페로몬은 그 조성이 종특이적(species-specific)이며, 비슷한 성분을 공유하는 유사종들이 방출하는 성페로몬과 동종의 암컷이 방출하는 성페로몬을 정확히 구분하기 위해서 수컷 나방은 촉각에 여러 종류의 고도로 특화된 페로몬 감각세포들을 갖고 있어서, 이들이 페로몬을 감지할 때 나오는 신경 신호들을 종합해서 동종의 페로몬을 인식하여 행동반응이 일어나게 된다. 수컷 나방은 보통 동종의 페로몬 성분뿐만 아니라 유사종이 사용하는 페로몬 성분들을 특이적으로 감지하는 길항적(antagonistic) 냄새감각세포들도 갖고 있어서 페로몬 식별력을 강화한다. 본 종설에서는 지금까지 보고된 수컷 나방의 페로몬 감지 시스템과 이와 연관된 수컷의 감각기 및 행동반응에 대한 연구 결과들을 정리하고, 이를 종합하여 앞으로의 연구 방향을 제시하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Moths have a well-developed sex pheromone communication system. Male moths exhibit an extremely sensitive and selective sex pheromone detection system so that they can detect the sex pheromone produced by conspecific females and locate them for successful mating. Using the pheromone detection system...

주제어

참고문헌 (117)

  1. Allison, J.D., Carde, R.T., 2008. Male pheromone blend preference function measured in choice and no-choice wind tunnel trials with almond moths, Cadra cautella. Anim. Behav. 75, 259-266. 

  2. Almaas, T.J., Mustaparta, H., 1991. Heliothis virescens: response characteristics of receptor neurons in sensilla trichodea type 1 and type 2. J. Chem. Ecol. 17, 953-972. 

  3. Ammagarahalli, B., Gemeno, C., 2014. Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae). J. Insect Physiol. 71, 128-136. 

  4. Anderson, P, Sadek, M.M., Hansson, B.S., 2003. Pre-exposure modulates attraction to sex pheromone in a moth. Chem. Senses. 28, 285-291. 

  5. Anderson, P., Hansson, B.S., Nilsson, U., Han, Q., Sjoholm, M., Skals, N., Anton, S., 2007. Increased behavioral and neuronal sensitivity to sex pheromone after brief odor experience in a moth. Chem. Senses 32, 483-491. 

  6. Ando, T., Inomata, S., Yamamoto, M., 2004. Lepidopteran Sex Pheromones. In: Schulz, S. (Ed.), The chemistry of pheromones and other semiochemicals I, topics in current chemistry. Vol. 96. Springer-Verlag, Berlin, Heidelberg. 

  7. Badeke, E., Haverkamp, A., Hansson, B.S., Sachse, S., 2016. A challenge for a male noctuid moth? Discerning the female sex pheromone against the background of plant volatiles. Frontiers Physiol. 7, 143. doi: 10.3389/fphys.2016.00143 

  8. Baker, T.C., 2002. Mechanism for saltational shifts in pheromone communication systems. Proc. Natl Acad. Sci. 99, 13368-13370. 

  9. Baker, T.C., 2009. Nearest neural neighbors: moth sex pheromone receptors HR11 and HR13. Chem. Senses 34, 465-468. 

  10. Baker, T.C., Carde, R.C., 1979. Endogenous and exogenous factors affecting periodicities of female calling and male sex pheromone response in Grapholitha molesta (Busck). J. Insect Physiol. 25, 943-950. 

  11. Baker, T.C., Domingue, M.J., Myrick, A.J., 2012. Working range of stimulus flux transduction determines dendrite size and relative number of pheromone component receptor neurons in moths. Chem. Senses 37, 299-313. 

  12. Baker, T.C., Fadamiro, H., 1998. Moth uses fine tuning for odour resolution. Nature 393, 530. 

  13. Baker, T.C., Willis, M., Haynes, K.F., Phelan, P.L., 1985. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10, 257-265. 

  14. Barrozo, R.B., Jarriault, D., Deisig, N., Gemeno, C., Monsempes, C., Lucas, P., Gadenne, C., Anton, S., 2011. Mating-induced differential coding of plant odour and sex pheromone in a male moth. Eur. J. Neurosci. 33, 1841-1850. 

  15. Bartell, R.J., Roelofs, W.L., 1973. Inhibition of sexual response in males of the moth Argyroteania velutinana by brief exposures to synthetic pheromone or its geometrical isomer. J. Insect Physiol. 19, 655-661. 

  16. Berg, B.G., Almaas, T.J., Bjaalie, J.G., Mustaparta, H., 1998. The macroglomerular complex of the antennal lobe in the tobacco budworm Heliothis virescens: specified subdivision in four compartments according to information about biologically significant compounds. J. Comp. Physiol. A. 183, 669-682. 

  17. Borrero-Echeverry, F., Bengtsson, M., Nakamuta, K., Witzgall, P., 2018. Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution 72, 2225-2233. 

  18. Brill, F.M., Rosenbaum, T., Reus, I., Kleineidam, J.C., Nawrot, P.M., Rossler, W., 2013. Parallel processing via a dual olfactory pathway in the honeybee. J. Neurosci. 33, 2443-2456. 

  19. Butenandt, A., Beckmann, R., Stamm, D., Hecker, E., 1959. Uber den Sexuallockstoff des Seidenspinners, Bombyx mori: Reindarstellung und Konstitution. Z. Naturforsch 14, 283-284. 

  20. Castrovillo, P.J. , Carde, R.T., 1979. Environmental regulation of female calling and male pheromone response periodicities in the codling moth (Laspeyresia pomonella). J. Insect Physiol. 25, 659-667. 

  21. Chang, H., Liu, Y., Ai, D., Jiang, X., Dong, S., Wang, G., 2017. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Curr. Biol. 27, 1610-1615. 

  22. Chemnitz, J., Jentschke, P.C., Ayasse, M., Steiger, S., 2015. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. Biol. Sci. 282, 20150832. 

  23. Choi, M.Y., Fuerst, E.J., Rafaeli, A., Jurenka, R., 2003. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc. Natl Acad. Sci. 100, 9721-9726. 

  24. Christensen, T., Hildebrand, G.J., 1987. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp. Physiol. A. 160, 553-569. 

  25. Cotton, S., Fowler, K., Pomiankowski, A., 2004. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771-783. 

  26. De Bruyne, M., Baker, T.C., 2008. Odor detection in insects: volatile codes. J. Chem. Ecol. 34, 882-897. 

  27. Deng, J-Y., Wei, H., Huang, Y-P., Du, J-W., 2004. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J. Chem. Ecol. 30, 2037-2045. 

  28. Dickens, J.C., Smith, J.W., Light, D.M., 1993. Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm, Heliothis virescens (Lep.: Noctuidae). Chemoecol. 4, 175-177. 

  29. Domingue, M.J., Musto, C.J., Linn, Jr. C.E., Roelofs, W.L., Baker, T.C., 2007. Altered olfactory receptor neuron responsiveness in rare Ostrinia nubilalis males attracted to the O. furnacalis pheromone blend. J. Insect Physiol. 53, 1063-1071. 

  30. Durand, N., Carot-Sans, G., Bozzolan, F., Rosell, G., Siaussat, D., Debernard, S., Chertemps, T., Maibeche-Coisne, M., 2011. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS ONE 6, e29147. doi: 10.1371/journal.pone.0029147 

  31. Fabre, J.H., 1913. The great peacock moth. in: Teale, E.W. (Ed.), The insect world of J. Henri Fabre. 1964. Dodd, Mead & Co., New York. 

  32. Figueredo, A.J., Baker, T.C., 1992. Reduction of the response to sex pheromone in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) following successive pheromonal exposures. J. Insect Behav. 5, 347-363. 

  33. Goldman, A.L., van Naters, W.V., Lessing, D., Warr, C.G., Carlson, J.R., 2005. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661-666. 

  34. Gomez, V.R.C., Nieto, G., Valdes, J., Castrejon, F., Rojas, J.C., 2003. The antennal sensilla of Zamagiria dixolophella Dyar (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 96, 672-678. 

  35. Gonzalez-Karlsson, A., Golov, Y., Steinitz, H., Moncaz, A., Halon, E., Horowitz, R., Goldenberg, I., Gurka, R., Liberzon, A., Soroker, V., Jurenka, R., Harari, A.R., 2021. Males perceive honest information from female released sex pheromone in a moth. Behavior. Ecol. 32, 1127-1137. 

  36. Hansson, B.S., Blackwell, A., Hallberg, E., Lofqvist, J., 1995. Physiological and morphological characteristics of the sex pheromone detecting system in male corn stemborers, Chilo partellus (Lepidoptera: Pyralidae). J. Insect Physiol. 41, 171-178. 

  37. Hansson, B.S., Hallberg, E., Lofstedt, C., Steinbrecht, R.A., 1994. Correlation between dendrite diameter and action potential amplitude in sex pheromone specific receptor neurons in male Ostrinia nubilalis. Tissue and Cell, 26, 503-512. 

  38. Hansson, B.S., Sylvia, A., 2000. Function and morphology of the antennal lobe: New developments. Annu. Rev. Entomol. 45, 203-231. 

  39. Harari, A.R., Zahavi, T., Thiery, D., 2011. Fitness cost of pheromone production in signaling female moths. Evolution 65, 1572-1582. 

  40. Ishida, Y., Leal, W.S., 2005. Rapid inactivation of a moth pheromone. Proc. Natl Acad. Sci. 102, 14075-14079. 

  41. Jacob, V., Monsempes, C., Rospars, J.P., Masson, J.B., Lucas, P., 2017. Olfactory coding in the turbulent realm. PLoS Comput Biol. 13, e1005870. 

  42. Jing, L., Zhaoqun, L., Zongxiu, L., Xiaoming, C., Lei, B., Zhaojun, X., Chen, Z., 2019. Comparison of male antennal morphology and sensilla physiology for sex pheromone olfactory sensing between sibling moth species: Ectropis grisescens and Ectropis obliqua (Geometridae). Arch. Insect Biochem. Physiol. 101, e21545. doi: 10.1002/1rch.21545 

  43. Judd, G.J.R., Gardiner, M.G.T., DeLury. N.C., Karg, G., 2005. Reduced antennal sensitivity, behavioural response, and attraction of male codling moths, Cydia pomonella, to their pheromone (E,E)-8,10-dodecandien-1-ol following various pre-exposure regimes. Entomol. Exp. Appl. 114, 63-78. 

  44. Jung, C.R., Jung, J.K., Kim, Y., 2013. Effects of different sex pheromone compositions and host plants on the mating behavior of two Grapholita species. J. Asia-Pacific Entomol. 16, 507-512. 

  45. Jurenka, R., 2017. Regulation of pheromone biosynthesis in moths. Curr. Opinion Insect Sci. 24, 29-35. 

  46. Justus, K.A., Carde, R.T., French, A.S., 2005. Dynamic properties of antennal responses to pheromone in two moth species. J. Neurophysiol. 93, 2233-2239. 

  47. Kaissling, K.E., 1996. Peripheral mechanisms of pheromone reception in moths. Chem. Senses 21, 257-268. 

  48. Kaissling, K.-E., Priesner, E., 1970. Smell threshold of the silkmoth. Naturwissenschaften 57, 23-28. 

  49. Kanno, H., 1981 . Mating behaviour of the rice stem borer moth, Chilo suppressalis Walker (Lepidoptera: Pyralidae). V. Cdtical illumination intensity for female calling and male sexual response under various temperatures. Appl. Entomol. Zool. 16, 179-185. 

  50. Karlson, P., Luscher, M., 1959. Pheromones: a new term for a class of biologically active substances. Nature 183, 55-66. 

  51. Karpati, Z., Tasin, M., Carde, R.T., Dekker, T., 2013. Early quality assessment lessens pheromone specificity in a moth. Proc. Natl. Acad. Sci. 110, 7377-7382. 

  52. Keil, T., 1989. Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21, 139-151. 

  53. Kennedy, J.S., Ludlov, A.R., Sanders, D.J., 1981. Guidance of flying male moths by wind-born sex pheromone. Physiol. Entomol. 6, 395-412. 

  54. Koehl, M.A.R., 2006. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31, 93-105. 

  55. Koutroumpa, F.A., Karpati, Z., Monsempes, C., Hill, S.R., Hansson, B.S., Jacquin-Joly, E., Krieger, J., Dekker, T., 2014. Shifts in sensory neuron identity parallel differences in pheromone preference in the European corn borer. Front. Ecol. Evol. 2, 00065. doi: 10.3339/fevo.2014.00065 

  56. Kozlov, M.V., Zhu, J., Philipp, P., Francke, W., Zvereva, E.L., Hansson, B.S., Lofstedt, C., 1996. Pheromone specificity in Eriocrania semipurpurella (Stephens) and E. sangii (Wood) (Lepidoptera: Eriocraniidae) based on chirality of semiochemicals. J. Chem. Ecol. 22, 431-454. 

  57. Krieger, J., Gondesen, I., Forstner, M., Gohl, T., Dewer, Y., Breer, H., 2009. HR11 and HR13 receptor-expressing neurons are housed together in pheromone-responsive sensilla trichodea of male Heliothis virescens. Chem. Senses 34, 469-477. 

  58. Kuebler, S.L., Schubert, M., Karpati, Z., Hansson, B.S., Olsson, S.B., 2012. Antennal lobe processing correlates to moth olfactory behavior. J. Neurosci. 32, 5772-5782. 

  59. Kumar, G.L., Keil, T.A., 1996. Pheromone stimulation induces cytoskeletal changes in olfactory dendrites of male silkmoths (Lepidoptera, Saturniidae, Bombycidae). Naturwissenschaften 83, 476-478. 

  60. Larsson, M.C., Hallberg, E., Kozlov, M.V., Franke, W., Hansson, B.S., Lofstedt, C., 2002. Specialized olfactory receptor neurons mediating intra- and interspecific chemical communication in leafminer moths Eriocrania spp. (Lepidoptera: Eriocraniidae). J. Exp. Biol. 205, 989-998. 

  61. Larsson, M.C., Hansson, B.S., 1998. Receptor neuron responses to potential sex pheromone components in the caddisfly Rhyacophila nubile (Trichoptera: Rhyacophilidae). J. Insect Physiol. 44, 189-196. 

  62. Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E.A., Hedenstrom, E., Hansson, B.S., Gustavsson, A.L., Bengtsson, M., Birgersson, G., Walker III, W.B., Dweck, H.K.M., Becher, P.G., Witzgall, P., 2017. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology 15, 88. doi: 10.1186/s12915-017-0427-x 

  63. Lee, J.K., Strausfeld, N.J., 1990. Structure, distribution, and number of surface sensilla and their receptor cells on the antennal flagellum of the male sphinx moth Manduca sexta. J. Neurocytol. 19, 519-538. 

  64. Lee, S.G., 2006. Pheromone-related olfactory neuronal pathways of male heliothine moths. PhD thesis. The Pennsylvania State University. pp. 120-166. 

  65. Lee, S.G., Vickers, N.J., Baker, T.C., 2006. Glomerular targets of Heliothis subflexa male olfactory receptor neurons housed within long trichoid sensilla. Chem. Senses. 9, 821-834. 

  66. Levakova, M., Kostal, L., Monsempes, C., Jacob, V., Lucas, P., 2018. Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations. PLoS Comput. Biol. 14, e1006586 

  67. Light, D.M., Flath, R.A., Buttery, R.G., Zalom, F.G., Rice, R.E., Dickens, J.C., Jang, E.B., 1993. Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecol. 4, 145-152. 

  68. Liu, C., Liu, Y., Walker, W.B., Dong, S., Wang, G., 2013. Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hubner). Insect Biochem. Mol. Biol. 43, 747-754. 

  69. Lofstedt, C., Butlin, R.K., Guilford, T., Krebs, J.R., 1993. Moth pheromone genetics and evolution. Philos Trans. R. Soc. Lond. B Biol. Sci. 340, 167-177. 

  70. Lofstedt, C., Wahlberg, N., Millar, J.M., 2016. Evolutionary patterns of pheromone diversity in Lepidoptera, in: Allison, J.D., Carde, R.T. (Eds.), Pheromone communication in moths: evolution, behavior and application. University of California Press, Oakland, pp. 43-78. 

  71. Mafra-Neto, A., Carde, R.T., 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142-144. 

  72. Maitani, M.M., Allara, D.L., Park, K.C., Lee, S.G., Baker, T.C., 2010. Moth olfactory trichoid sensilla exhibit nanoscale-level heterogeneity in surface lipid properties. Arthropod Struct. Develop. 39, 1-16. 

  73. Masse, N.Y., Turner, C.G., Jefferis, S.X.E.G., 2009. Olfactory information processing in Drosophila. Curr. Biol. 19, 700-713. 

  74. McNeil, J.N., 1991. Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol. 36, 407-430. 

  75. Meng, L.Z., Wu, C.H., Wicklein, M., Kaissling, K.E., Bestmann, H.J., 1989. Number and sensitivity of three types of pheromone receptor-cells in Antheraea pernyi and Antheraea polyphemus. J. Comp. Physiol. A. 165, 139-146. 

  76. Millar, J.G., 2000. Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol. 45, 575-604. 

  77. Murlis, J., Jones, C.D., 1981. Fine-scale structure of odour plumes in relation to distant pheromone and other attractant sources. Physiol. Entomol. 6, 71-86. 

  78. Murlis, J., Willis, M.A., Carde, R.T., 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211-222. 

  79. Murlis, J.S., Elkinton, J.S., Carde, R.T., 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505-532. 

  80. Murmu, M.S., Hanoune, J., Choi, A., Bureau, V., Renou, M., Dacher, M., Deisig, N., 2020. Modulatory effects of pheromone on olfactory learning and memory in moths. J. Insect Physiol. 127, 104159. 

  81. Naka, H., Fujii, T., 2020. Chemical divergences in the sex pheromone communication systems in moths, in: Ishikawa, Y. (Ed.), Insect sex pheromone research and beyond, Springer, Singapore, pp. 3-18. 

  82. Nakagawa, T., Sakurai, T., Nishioka, T., Touhara, K., 2005. Insect sex pheromone signals mediated by specific combinations of olfactory receptors. Science 307, 1638-1642. 

  83. Nieberding, C.M., Fischer, K., Saastamoinen, M., Allen, C.E., Wallin, E.A., Hedenstrom, E., Brakefield, P.M., 2012. Cracking the olfactory code of a butterfly: the scent of ageing. Ecol. Lett. 15, 415-424. 

  84. Party, V., Hanot, C., Busser, D.S., Rochat, D., Renou, M., 2013. Changes in odor background affect the locomotory response to pheromone in moths. PLoS ONE 8, e52897. 

  85. Party, V., Hanot, C., Said, I., Rochat, D., Renou, M., 2009. Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chem. Senses 34, 763-774. 

  86. Pasqual, C.D., Groot, A.T., Mappes, J., Burdfield-Steel, E., 2021. Evolutionary importance of intraspecific variation in sex pheromones. Trends Ecol. Evol. 36, 848-859. 

  87. Plettner, E., Lazar, J., Prestwich, E.G., Prestwich, G.D., 2000. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39, 8953-8962. 

  88. Pregitzer, P., Schubert, M., Breer, H., Hansson, B.S., Sachse, S., Krieger, J., 2012. Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Front. Cell. Neurosci. 6, 42. 

  89. Reddy, G.V.P., Guerrero, A., 2000. Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp capitata. J. Agric. Food Chem. 48, 6025-6029. 

  90. Renou, M., Gadenne, C., Tauban, D., 1996. Electrophysiological investigations of pheromone-sensitive sensilla in the hybrids between two moth species. J. Insect Physiol. 42, 267-277. 

  91. Rospars, J.P., Lansky, P., Krivan, V., 2003. Extracellular transduction events under pulsed stimulation in moth olfactory sensilla. Chem. Senses 28, 509-522. 

  92. Rouyar, A., Deisig, N., Dupuy, F., Limousin, D., Wycke, M.A., Renou, M., Anton, S., 2015. Unexpected plant odor responses in a moth pheromone system. Front. Physiol. 6, 148. doi: 10.3389/fphys.2015.00148 

  93. Ruther, J., Matschke, M., Garbe, L.A., Steiner, S., 2009. Quantity matters: male sex pheromone signals mate quality in the parasitic wasp Nasonia vitripennis. Proc. Biol. Sci. 276, 3303-3310. 

  94. Schmidt-Busser, D., Von Arx, M., Guerin, P.M., 2009. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone. J. Comp. Physiol. A. 195, 853-864. 

  95. Shorey, H.H. , Gaston, L.K., 1964. Sex pheromone of noctuid moths. III. Inhibition of male responses to the sex pheromone of Trichoplusia ni (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 57, 775-779. 

  96. Steinbrecht, R.A., 1997. Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect Morphol. Embryol. 26, 229-245. 

  97. Stelinski, L.L., Miller, J.R., Gut, L.J., 2003. Presence of long-lasting peripheral adaptation in oblique-banded leafroller, Choristoneura rosaceana and absence of such adaptation in redbanded leafroller, Agryrotaenia velutiana. J. Chem. Ecol. 29, 405-423. 

  98. Stengl, M., 2010. Pheromone transduction in moths. Front. Cellular Neurosci. 4. doi: 10.3389/fncel.2010.00133 

  99. Sun, L., Wang, Q., Zhang, Y., Tu, X., Yan, Y., Wang, Q., Dong, K., Zhang, Y., Xiao, Q., 2019. The sensilla trichodea-biased EoblPBP1 binds sex pheromones and green leaf volatiles in Ectropis obliqua Prout, a geometrid moth pest that uses Type-II sex pheromones. J. Insect Physiol. 116, 17-24. 

  100. Todd, J.L., Baker, T.C., 1999. Function of peripheral olfactory organs, in: Hansson, B.S. (Ed.), Insect olfaction, Springer, New York, pp. 67-96. 

  101. Tomescu, N., Stan, G., Chis, V., leleriu, S., Pastinaru, C., 1981. Influence of light and age on the response of males of Mamestra brassicae L. (Lepidoptera: Noctuidae) to sexual pheromone. Stud. Univ. Babes 26, 43-47. 

  102. Tripathy, S., Peters, O.J., Staudacher, E.M., Kalwar, F.R., Hatfield, M.N., Daly, K.C., 2010. Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection. Front. Cell. Neurosci. 4, 1-14. doi: 10.3389/neuro.03.001.2010. 

  103. Turgeon, J.J, McNeil, J.N., Roelofs, W.L., 1983. Responsiveness of Pseudaletia unipuncta males to the female sex pheromone. Physiol. Entomol. 8, 339-344. 

  104. Vickers, N.J., Baker, T.C., 1992, Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera, Noctuidae). J. Insect Behav. 5, 699-687. 

  105. Vickers, N.J., Christensen, T.A., Baker, T.C., Hildebrand, J.G., 2001. Odour-plume dynamics influence the brain's olfactory code. Nature 410, 466-470. 

  106. Vogt, R.G., Riddiford, L.M., 1981. Pheromone binding and inactivation by moth antennae. Nature 293, 161-163. 

  107. Vogt, R.G., Riddiford, L.M., Prestwich, G.D., 1985. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc. Natl Acad. Sci. 82, 8827-8831. 

  108. Wang, C., Wang, B., Wang, G., 2021. Functional characterization of sex pheromone neurons and receptors in the armyworm, Mythimna separata (Walker). Front. Neuroanat. 15, 673420. doi:10.3389/fnana.2021.673420 

  109. Wanner, K.W., Nichols, A.S., Allen, J.E., Bunger, P.L., Garczynski, S.F., Linn, C.E., 2010. Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS ONE 5, e8685.doi: 10.1371/journal.pone.0008685 

  110. Willis, M.A., Ford, E.A., Avondet, J.L., 2013. Odor tracking flight of male Manduca sexta moths along plumes of different crosssectional area. J. Comp. Physiol. A. 199, 1015-1036. 

  111. Wu, H., Hou, C., Huang, L.Q., Yan, F.S., Wang, C.Z., 2013. Peripheral coding of sex pheromone blends with reverse ratios in two Helicoverpa Species. PLoS ONE 7, e70078. 

  112. Yang, Z.H., Bengtsson, M., Witzgall, P., 2004. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. J. Chem. Ecol. 30, 619-629. 

  113. Yuvaraj, J.K., Andersson, M.N., Anderbrant, O., Lofstedt, C., 2018. Diversity of olfactory structures: a comparative study of antennal sensilla in Trichoptera and Lepidoptera. Micron. 111, 9-18. 

  114. Zhang, D.D., Lofstedt, C., 2015. Moth pheromone receptors: gene sequences, function, and evolution. Front. Ecol. Evol. 3, 105. doi:10.3389/fevo.2015.00105 

  115. Zhang, X.Q., Mang, D.Z., Liao, H., Ye, J., Qian, J.L., Dong, S.L., Zhang, Y.N., He, P., Zhang, Q.H., Purba, E.R., Zhang, L.W., 2021. Functional disparity of three pheromone-binding proteins to different sex pheromone components in Hyphantria cunea (Drury). J. Agric. Food Chem. 69, 55-66. 

  116. Zhu, J.W., Kozlov, M.V., Philipp, P., Francke, W., Lofstedt, C., 1995. Identification of a novel moth sex pheromone in Eriocrania cicatricella (Zett.) (Lepidoptera: Eriocraniidae) and its phylogenetic implications. J. Chem. Ecol. 21, 29-43. 

  117. Zweerus, N.L., van Wijk, M., Schal, C., Groot, A.T., 2021. Experimental evidence for female mate choice in a noctuid moth. Animal Behav. 179, 1-13. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로