$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

진드기의 수분조절 생리와 진드기 방제전략
Osmoregulatory Physiology in Ixodidae Ticks: An Alternative Target for Management of Tick 원문보기

한국응용곤충학회지 = Korean journal of applied entomology, v.61 no.1, 2022년, pp.91 - 100  

말도나도-루이즈 폴리나 (캔자스주립대학교 곤충학과) ,  김동흔 (경북대학교 질병매개곤충학과) ,  박윤성 (캔자스주립대학교 곤충학과)

초록
AI-Helper 아이콘AI-Helper

진드기는 박테리아, 바이러스, 원생동물 및 균류를 포함한 다양한 병원체를 전달할 수 있는 감염병매개체이다. 진드기는 불리한 환경조건에서도 생존할 수 있는 능력이 있으며, 흡혈이 필수적인 절지동물의 진화적 산물로써 비흡혈 기간이 장기간 지속되는 경우에도 생존이 가능하다. 특히, 높은 온도와 낮은 습도 환경에서도 견딜 수 있는 수분 조절 메커니즘과 내열성의 생리적 특징은 진드기가 전 세계적으로 분포하도록 한 중요한 요인이다. 진드기의 침샘, 말피기관, 후장 그리고 뇌를 포함하는 여러 기관이 관여하는 물과 이온의 획득 및 배출은 복합적인 메커니즘에 의해 조절된다. 진드기가 수분을 확보하는 주요 경로는 흡혈과정 또는 공기 중 수증기를 직접 포집하는 방식이며, 이와 더불어 진드기가 자연조건에서 맺힌 물방울을 직접 마시며 수분을 보충한다는 것이 최근 본 연구진의 연구를 통해 밝혀졌다. 물방울에서 획득된 수분은 진드기 침샘의 포도상 부위(유형 I) 또는 중장을 통해 체내로 흡수된다는 것이 형광물질 추적을 통해 확인되었다. 이 연구 결과는 진드기 방제 및 병원체 전파 억제를 위한 전략 개발에 새로운 방향을 제시하였다. 본 종설에서는 진드기 방제를 위한 잠재적 표적인 진드기의 수분조절 및 표피 배설의 생리적 메커니즘을 종합적으로 다룬다.

Abstract AI-Helper 아이콘AI-Helper

Ticks are the arthropod vector capable of transmitting diverse pathogens, which include bacteria, viruses, protozoan and fungi. Ticks are able to survive under stressful environmental conditions. One of evolutionary outcomes of these obligatory hematophagous arthropods is the survival for extended p...

주제어

표/그림 (2)

참고문헌 (70)

  1. Abbas, R.Z., Zaman, M.A., Colwell, D.D., Gilleard, J., Iqbal, Z., 2014. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 203, 6-20. 

  2. Albers, M.A., Bradley, T.J., 2004. Osmotic regulation in adult Drosophila melanogaster during dehydration and rehydration. J. Exp. Biol. 207, 2313-2321 

  3. Benoit, J.B., Denlinger, D.L., 2010. Meeting the challenges of onhost and off-host water balance in blood-feeding arthropods. J. Insect. Physiol. 56, 1366-1376. 

  4. Benoit, J.B., Lazzari, C.R., Denlinger, D.L., Lahondere, C., 2019. Thermoprotective adaptations are critical for arthropods feeding on warm-blooded hosts. Curr. Opin. Insect. Sci. 34, 7-11. 

  5. Berridge, M.J., 1970. Osmoregulation in terrestrial arthropods, in: Flokin, M. (Ed.), Chemical zoology V5: Arthropoda Part A, Part 1. Academic Press, New York, pp. 287-316. 

  6. Beyenbach, K.W., 2003. Transport mechanisms of diuresis in Malpighian tubules of insects. J. Exp. Biol. 206, 3845-3856. 

  7. CDC, 2018. Tickborne diseases in the United States: A reference manual for healthcare providers, 5 ed, https://www.cdc.gov/ticks/tickbornediseases/TickborneDiseases-P.pdf (accessed on 20 December, 2020). 

  8. Chen, A., Holmes Sp Fau - Pietrantonio, P.V., Pietrantonio, P.V., 2004. Molecular cloning and functional expression of a serotonin receptor from the Southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect Mol Biol. 13, 45-54. 

  9. Coast, G.M., 2009. Neuroendocrine control of ionic homeostasis in blood-sucking insects. J. Exp. Biol. 212, 378-386. 

  10. Coles, T.B., Dryden, M.W., 2014. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites & Vectors 7, 8. 

  11. Crompton, A.W., Taylor, C.R., Jagger, J.A., 1978. Evolution of homeothermy in mammals. Nature 272, 333-336. 

  12. Dantas-Torres, F., Chomel, B.B., Otranto, D., 2012. Ticks and tickborne diseases: a one health perspective. Trends Parasitol. 28, 437-446. 

  13. De la Fuente, J., Estrada-Pena, A., Venzal, J.M., Kocan, K.M., Sonenshine, D.E., 2008. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938-6946. 

  14. Dipeolu, O.O., Ogunji, F.O., 1980. Laboratory studies on factors influencing the oviposition and eclosion patterns of Amblyomma vagieratum (Fabricius, 1794) females. Folia Parasitol. 27, 257-264. 

  15. Freda, T.J., Needham, G.R., 1984. Water exchange kinetics of the long star tick Amblyomma americanum, in: Griffiths, D.A., Bowman, C.E. (Eds.) Acarology Vol.6, Horwood, Chichester, pp. 358-364. 

  16. Guglielmone, A.A., Robbins, R.G., Apanaskevich, D.A., Petney, T.N., Estrada-Pena, A., Horak, I.G., Shao, R., Barker, S.C., 2010. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa 2528, 1-28. 

  17. Hackman, R.H., Filshie, B.K. 1982. The tick cuticle, Physiology of Ticks (Vol 1.). Pergamon Press, UK, pp. 1-42. 

  18. Hamdy, B.H., Sidrak, W., 1982. Guanine biosynthesis in the Ticks (Acari) Dermacentor Andersoni (Ixodidae) and Argas (Persicargas) Arboreus (Argasidae): Fate of Labelled Guanine Precursors 1, 2. J. Med. Entomol. Suppl. 19, 569-572. 

  19. Hsu, M.H., and Sauer, J. R., 1974. Sodium, Potassium, Chloride and water balance in the feeding lone star tick, Amblyomma americanum (Linneaus) (Acarina: Ixodidae). J. Kans. Entomol. Soc. 47, 536-537. 

  20. Jongejan, F., Uilenberg, G., 2004. The global importance of ticks. Parasitology 129 Suppl, S3-14. 

  21. Kahl, O., Alidousti, I., 1997. Bodies of liquid water as a source of water gain for Ixodes ricinus ticks (Acari: Ixodidae). Exp. Appl. Acarol. 21, 731-746. 

  22. Kaufman, W.R., Phillips, J.E., 1973. Ion and water balance in the Ixodid tick Dermacentor Andersoni. I. Routes of Ion and Water Excretion. J. Exp. Biol. 58, 523-536. 

  23. Kim, D., Maldonado-Ruiz, P., Zurek, L., Park, Y., 2017. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis. PeerJ 5, e3984. 

  24. Kim, D., Simo, L., Park, Y., 2014. Orchestration of salivary secretion mediated by two different dopamine receptors in the blacklegged tick Ixodes scapularis. J. Exp. Biol. 217, 3656-3663. 

  25. Kim, D., Simo, L., Vancova, M., Urban, J., Park, Y., 2019. Neural and endocrine regulation of osmoregulatory organs in tick: Recent discoveries and implications. Gen. Comp. Endocrinol. 278, 42-49. 

  26. Kim, D., Urban, J., Boyle, D.L., Park, Y., 2016. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis. Sci. Rep. 6, 21047. 

  27. Knulle, W., Devine, T.L., 1972. Evidence for active and passive components of sorption of atmospheric water vapour by larvae of the tick Dermacentor variabilis. J. Insect. Physiol. 18, 1653-1664. 

  28. Lahondere, C., Insausti, T.C., Paim, R.M.M., Luan, X., Belev, G., Pereira, M.H., Ianowski, J.P., Lazzari, C.R., 2017. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs. eLife 6, e26107. 

  29. Lahondere, C., Lazzari, C.R., 2012. Mosquitoes cool down during blood feeding to avoid overheating. Curr. Biol. 22, 40-45. 

  30. Lees, A.D., 1946. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37, 1-20. 

  31. Lees, A.D., 1948. Passive and active water exchange through the cuticle of ticks. Discuss. Faraday Soc. 3, 187-192. 

  32. Londt, J.G., Whitehead, G.B., 1972. Ecological studies of larval ticks in South Africa (Acarina: Ixodidae). Parasitology 65, 469-490. 

  33. Maddrell, S., O'Donnell, M., 1992. Insect Malpighian tubules: V-ATPase action in ion and fluid transport. J. Exp. Biol. 172, 417-429. 

  34. Maldonado-Ruiz, L.P., Park, Y., Zurek, L., 2020. Liquid water intake of the lone star tick, Amblyomma americanum: Implications for tick survival and management, Scientific Reports. p. 6000. 

  35. Meyer-Konig, A., Zahler, M., Gothe, R., 2001. Studies on survival and water balance of unfed adult Dermacentor marginatus and D. reticulatus ticks (Acari: Ixodidae). Exp. Appl. Acarol. 25, 993-1004. 

  36. Mullen, G.R., Durden, L.A., 2002. Ticks (Ixodida), medical and veterinary entomology. Academic Press, Amsterdam, pp. 517-558. 

  37. Needham, G.R., Teel, P.D., 1986. Water balance by ticks between bloodmeals, in: Sauer, J.R., Hair, J.A., (Eds.), Morphology, physiology and behavioral biology of ticks. Ellis Horwood Limited, Chinchester, England, pp. 100-151. 

  38. Norval, R.A., 1977. Studies on the ecology of the tick Amblyomma hebraeum Koch in the eastern Cape province of South Africa. II. Survival and development. J. Parasitol. 63, 740-747. 

  39. Nuttall, P.A., 2019a. Tick saliva and its role in pathogen transmission. Wien. Klin. Wochenschr. 2019, 1-12. 

  40. Nuttall, P.A., 2019b. Wonders of tick saliva. Ticks Tick Borne Dis. 10, 470-481. 

  41. Orchard, I., Leyria, J., Al-Dailami, A., Lange, A.B., 2021. Fluid secretion by malpighian tubules of rhodnius prolixus: Neuroendocrine control with new insights from a transcriptome analysis. Front. Endocrinol. 12, 772487. 

  42. WHO, 2014. A global brief on vector-borne diseases. Tech. Rep. 

  43. Pant, R., 1988. Nitrogen excretion in insects. Proc. Indian Acad. Sci. (Anim. Sci). 97, 379-415. 

  44. Pavis, C., Mauleon, H.,Barre, N., Maibeche, M., 1994. Dermal gland secretions of tropical bont tick,Amblyomma variegatum (Acarina: Ixodidae): Biological activity on predators and pathogens. J. Chem. Ecol. 20, 1495-1503. 

  45. Perner, J., Kropackov a, S., Kopacek, P., Ribeiro J.M.C., 2018. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS. Negl. Trop. Dis. 12, 1-17. 

  46. Rudolph, D., Knulle, W., 1974. Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature 249, 84-85. 

  47. Sauer, J.R., Essenberg, R.C., Bowman, A.S., 2000. Salivary glands in ixodid ticks: control and mechanism of secretion. J. Insect. Physiol. 46, 1069-1078. 

  48. Sauer, J.R., Hair, J.A., 1971. Water balance in the lone star tick (Acarina: Ixodidae): the effects of relative humidity and temperature on weight changes and total water content. J. Med. Entomol. 8, 479-485. 

  49. Simo, L., Koci J., Park, Y., 2014. Invertebrate specific D1-like dopamine receptor in control of salivary glands in the blacklegged tick Ixodes scapularis. J. Comp. Neurol. 522, 2038-2052 

  50. Simo, L., Koci, J., Zitnan, D., Park, Y., 2011. Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands. PLoS ONE 6, e16158. 

  51. Simo, L., Park, Y., 2014. Neuropeptidergic control of the hindgut in the black-legged tick Ixodes scapularis. Int. J. Parasitol. 44, 819-826. 

  52. Sonenshine, D.E., 1991a. Life cycles of ticks, in: Sonenshine, D.E., Roe, R.M. (Eds.), Biology of ticks, New York, pp. 51-66. 

  53. Sonenshine, D.E., 1991b. Water balance in non-feeding ticks, in: Sonenshine, R. (Ed.), In Biology of Ticks, New York, pp. 398-412. 

  54. Sonenshine, D.E., 2013. Excretion and water balance: hindgut, malpighian tubules and coxal glands, in: Sonenshine, D.E., Roe, R.M. (Eds.), Biology of ticks. Oxford University Press, New York, pp. 2016-2218. 

  55. Sonenshine, D.E., Roe, R.M., 2013a. Biology of Ticks Volume 1. Oxford University Press, Incorporated, Cary, United States. 

  56. Sonenshine, D.E., Roe, R.M., 2013b. Biology of Ticks Volume 2. Oxford University Press, Incorporated, Cary, United States. 

  57. Splisteser, H., Tyron, U., 1986. Untersuchungen zu faunistischen besonderheiten und zur aktivitat von Dermacentor nuttalli in der Mongolischen Volksrepublik. Monatshefte fur Veterinarmedizin 414, 126-128. 

  58. Stobbart, R.H., 1977. The control of the diuresis following a blood meal in females of the yellow fever mosquito Aedes aegypti (L). J. Exp. Biol. 69, 53-85. 

  59. Terrien, J., Perret, M., Aujard, F., 2011. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428-1444. 

  60. Thiemann, T., Fielden, L.J., Kelrick, M.I., 2003. Water uptake in the cat flea Ctenocephalides felis (Pulicidae: Siphonaptera). J. Insect. Physiol. 49, 1085-1092. 

  61. Valenzuela, J.G., Francischetti, I.M.B., Pham, V.M., Garfield, M.K., Mather, T.N., Ribeiro, J.M.C., 2002. Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 205, 2843-2864. 

  62. Walker, A.R., Fletcher, J.D., Gill, H.S., 1985. Structural and histochemical changes in the salivary glands of Rhipicephalus appendiculatus during feeding. Int. J. Parasitol. 15, 81-100. 

  63. Walker, A.R., Lloyd, C., Mcguire, K., Harrison, S.J., Hamilton, J., 1996. Integumental glands of the tick Rhipicephalus appendiculatus (Acari:Ixodidae) as potential producers of semiochemicals. J. Med. Entomol. 33 5, 743-759. 

  64. Walker, A.R., Lloyd, C.M., McGuire, K., Harrison, S.J., Hamilton, J.G.C., 2014. Integument and Sensillum Auriforme of the Opisthosoma of Rhipicephalus appendiculatus (Acari: Ixodidae). J. Med. Entomol. 33, 734-742. 

  65. Wharton, G.W., Richards, A.G., 1978. Water vapor exchange kinetics in insects and acarines. Annu. Rev. Entomol. 23, 309-328. 

  66. Wigglesworth, V.B., 1931. The physiology of excretion In a bloodsucking insect; Rhodnius prolixus; (Hemiptera, Reduviidae). J. Exp. Biol. 8, 411. 

  67. Wilkinson, P.R., 1953. Observations on the sensory physiology and behaviour of larvae of the cattle tick, Boophilus Microplus (Can.) (Ixodidae). Aust. J. Zool. 1, 345-356. 

  68. Yoder, J.A., Benoit, .J.B., Bundy, M.R., Hedges, B. Z., Gribbins, K.M., 2009. Functional morphology of secretion by the large wax glands (Sensilla sagittiformia) Involved in tick defense. Psyche J. Entom. 2009, 1-8. 

  69. Yoder, J.A., Hedges, B.Z., Tank, J.L., Benoit, J.B., 2009. Dermal gland secretion improves the heat tolerance of the brown dog tick, Rhipicephalus sanguineus, allowing for their prolonged exposure to host body temperature. J. Therm. Biol. 34, 256-265. 

  70. Yoder, J.A., Pollack, R.J., Spielman, A., 1993. An ant-diversionary secretion of ticks: First demonstration of an acarine allomone. J. Insect. Physiol. 39, 429-435. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로