$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

PET 생분해에 관여하는 방선균 유래 PETase 유전자의 이종숙주 발현
Heterologous Expression of Streptomyces PETase Gene Involved in PET Biodegradation 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.50 no.4, 2022년, pp.501 - 507  

양수빈 (인하대학교 생물공학과) ,  유연진 (인하대학교 생물공학과) ,  김응수 (인하대학교 생물공학과) ,  최시선 (인하대학교 생물공학과)

초록
AI-Helper 아이콘AI-Helper

대표적인 플라스틱 소재인 PET (Polyethylene terephthalate)는 높은 내구성, 경제성과 같은 유용한 물리화학적 특성으로 병, 섬유, 용기 등 다양한 산업 분야에 사용되고 있다. 최근 일회용품을 비롯한 플라스틱 사용량 증가로 인해, 이를 처리하기 위한 방법이 필요한 상황이다. 기존의 매립, 소각 등과 같이 자연상태에 노출되는 방법과 달리 최근 미생물을 이용한 친환경적인 방법이 주목받고 있다. 본 연구에서는 PETase 유전자를 가지고 있는 토양 유래 방선균 Streptomyces. javensis Inha503를 선별하고, agar plate diffusion assay를 통해 PU (Polyurethane) 가수분해 능력을 확인하였다. 해당 균주를 PET과 함께 한달 간 배양하였고, 주사전자현미경을 통해 PET 분해능력을 확인하였다. 또한, S. javensis Inha503 유전체 탐색에서 선별된 PETase 유전자를 PET 분해능이 없는 이종숙주 S. lividans와 S. coelicolor 균주에 도입하여 PET 분해능을 확인함으로써, 방선균 유래 PETase 유전자의 활성을 최초로 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

PET (Polyethylene terephthalate), a representative plastic material, has useful physicochemical properties such as high durability and economic feasibility, and is used in various industrial fields such as bottles, fibers, and containers. Due to the recent increase in plastic usage including disposa...

주제어

표/그림 (4)

참고문헌 (46)

  1. Joo S, Cho IJ, Seo H, Son HF, Sagong HY, Shin TJ, et al. 2018. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9: 382. 

  2. Plastics Europe. 2008. The compelling facts about plastics: an?analysis of plastic production, demand and recovery for 2006 in?Europe. 

  3. Plastics Europe. 2021. Plastics - the Facts 2021. 

  4. Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E,?Karapanagioti HK, et al. 2013. Classify plastic waste as hazardous.?Nature 494: 169-171. 

  5. Patricio Silva AL, Prata JC, Walker TR, Duarte AC, Ouyang W,?Barcelo D, et al. 2021. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J.?405: 126683. 

  6. Knoblauch D, Mederake L. 2001. Government policies combatting plastic pollution. Curr. Opin. Toxicol. 28: 87-96. 

  7. Chung MS, Lee WH, You YS, Kim HY, Park KM. 2003. Manufacturing multi-degradable food packaging films and their degradability. Korean J. Food. Sci. Technol. 35: 877-883. 

  8. Organization for Economic Co-operation and Development.?2022. Global Plastic Outlook. 

  9. Teuten EL, Saquing JM, Knappe DR, Barlaz MA, Jonsson S, Bjorn?A, et al. 2009. Transport and release of chemicals from plastics to?the environment and to wildlife. Philos. Trans. R. Soc. Lond. B. Biol.?Sci. 364: 2027-45. 

  10. Ragaert K, Delva L, Van Geem K. 2017. Mechanical and chemical?recycling of solid plastic waste. Waste. Manag. 69: 24-58. 

  11. Drzyzga O, Prieto A. 2019. Plastic waste management, a matter?for the 'community'. Microb. Biotechnol. 12: 66-68. 

  12. Almeida EL, Carrillo Rincon AF, Jackson SA, Dobson ADW. 2019.?In silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est)?with polycaprolactone (PCL)-degrading activity, from the?marine sponge-derived strain Streptomyces sp. SM14. Front.?Microbiol. 10: 2187. 

  13. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y,?et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196-1199. 

  14. Wei R, Zimmermann W. 2017. Biocatalysis as a green route for?recycling the recalcitrant plastic polyethylene terephthalate.?Microb. Biotechnol. 10: 1302-1307. 

  15. Kawai F, Kawabata T, Oda M. 2019. Current knowledge on enzymatic PET degradation and its possible application to waste?stream management and other fields. Appl. Microbiol. Biotechnol.?103: 4253-4268. 

  16. Bornscheuer UT. 2016. Feeding on plastic. Science 351: 1154-1155. 

  17. Chen CC, Han X, Ko TP, Liu W, Guo RT. 2018. Structural studies?reveal the molecular mechanism of PETase. FEBS J. 285: 3717-3723. 

  18. Fecker T, Galaz-Davison P, Engelberger F, Narui Y, Sotomayor M,?Parra LP, et al. 2018. Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophys J. 114:?1302-1312. 

  19. Son HF, Cho IJ, Joo S, Seo H, Sagong HY, Choi SY, et al. 2019.?Rational protein engineering of thermo-stable PETase from?Ideonella sakaiensis for highly efficient PET degradation. ACS?Catal. 9: 3519-3526. 

  20. Liu B, He L, Wang L, Li T, Li C, Liu H, et al. 2018. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene?terephthalate) hydrolase PETase from Ideonella sakaiensis.?Chembiochem. 19: 1471-1475. 

  21. Ma Y, Yao M, Li B, Ding M, He B, Chen S, et al. 2018. Enhanced?poly(ethylene terephthalate) hydrolase activity by protein engineering. Engineering 4: 888-893. 

  22. Kim HR, Lee HM, Yu HC, Jeon E, Lee S, Li J, Kim DH. 2020. Biodegradation of polystyrene by Pseudomonas sp. isolated from the?gut of superworms (Larvae of Zophobas atratus). Environ. Sci.?Technol. 54: 6987-6996. 

  23. Woo S, Song I, Cha HJ. 2020. Fast and facile biodegradation of?polystyrene by the gut microbial flora of Plesiophthalmus davidis?larvae. Appl. Environ. Microbiol. 86: e01361-20. 

  24. Kim JW, Park SB, Tran QG, Cho DH, Choi DY, Lee YJ, et al. 2020.?Functional expression of polyethylene terephthalate-degrading?enzyme (PETase) in green microalgae. Microb. Cell Fact. 19: 97. 

  25. Choi SS, Katsuyama Y, Bai L, Deng Z, Ohnishi Y, Kim ES. 2018.?Genome engineering for microbial natural product discovery.?Curr. Opin. Microbiol. 45: 53-60. 

  26. Kim HY, Han CY, Park JS, Oh SH, Kang SH, Kim ES, et al. 2018.?Nystatin-like Pseudonocardia polyene B1, a novel disaccharide-containing antifungal heptaene antibiotic. Sci. Rep. 8: 13584. 

  27. Kang HS, Kim ES. 2021. Recent advances in heterologous?expression of natural product biosynthetic gene clusters in?Streptomyces hosts. Curr. Opin. Biotechnol. 69: 118-127. 

  28. Kim SH, Lee HN, Kim HJ, Kim ES. 2011. Transcriptome analysis of?an antibiotic downregulator mutant and synergistic actinorhodin?stimulation via disruption of a precursor flux regulator in?Streptomyces coelicolor. Appl. Environ. Microbiol. 77: 1872-1877. 

  29. Duong CTP, Lee HN, Choi SS, Lee SY, Kim ES. 2009. Functional?expression of SAV3818, a putative TetR-family transcriptional?regulatory gene from Streptomyces avermitilis, stimulates antibiotic production in Streptomyces species. J. Microbiol. Biotechnol.?19: 136-139. 

  30. Lee HN, Kim JS, Kim P, Lee HS, Kim ES. 2013. Repression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor.?Appl. Environ. Microbiol. 79: 4159-4163. 

  31. Hwang YB, Lee MY, Park HJ, Han K, Kim ES. 2007. Isolation of?putative polyene-producing actinomycetes strains via PCR-based genome screening for polyene-specific hydroxylase?genes. Process. Biochem. 42: 102-107. 

  32. Nah JH, Park SH, Yoon HM, Choi SS, Lee CH, Kim ES. 2012. Identification and characterization of wblA-dependent tmcT regulation during tautomycetin biosynthesis in Streptomyces sp.?CK4412. Biotechnol. Adv. 30: 202-209. 

  33. Park HJ, Kim ES. 2003. An inducible Streptomyces gene cluster?involved in aromatic compound metabolism. FEMS Microbiol.?lett. 226: 151-157. 

  34. Pyeon H, Nah HJ, Kang SH, Choi SS, Kim ES. 2017. Heterologous?expression of pikromycin biosynthetic gene cluster using?Streptomyces artificial chromosome system. Microb. Cell. Fact.?16: 96. 

  35. Kim ES, Hopwood DA, Sherman DH. 1994. Analysis of type II?polyketide beta-ketoacyl synthase specificity in Streptomyces?coelicolor A3 (2) by trans complementation of actinorhodin?synthase mutants. J. Bacteriol. 176: 1801-1804. 

  36. Park HS, Kang SH, Park HJ, Kim ES. 2005. Doxorubicin productivity?improvement by the recombinant Streptomyces peucetius with?high-copy regulatory genes cultured in the optimized media?composition. J. Microbiol. Biotechnol. 15: 66-71. 

  37. Park NS, Myeong JS, Park HJ, Han KB, Kim SN, Kim ES. 2005. Characterization and culture optimization of regiospecific cyclosporin?hydroxylation in rare actinomycetes species. J. Microbiol. Biotechnol. 15: 188-191. 

  38. Im JH, Kim MG, Kim ES. 2007. Comparative transcriptome analysis?for avermectin overproduction via Streptomyces avermitilis?microarray system. J. Microbiol. Biotechnol. 17: 534-538. 

  39. Kim CY, Park HJ, Kim ES. 2003. Heterologous expression of?hybrid type II polyketide synthase system in Streptomyces?species. J. Microbiol. Biotechnol. 13: 819-822. 

  40. Park NS, Park HJ, Han KB, Kim ES. 2006. Heterologous expression?of novel cytochrome P450 hydroxylase genes from Sebekia?benihana. J. Microbiol. Biotechnol. 16: 295-298. 

  41. Ma L, Du L, Chen H, Sun Y, Huang S, Kim ES, et al. 2015. Reconstitution of the in vitro activity of the cyclosporine-specific P450?hydroxylase from Sebekia benihana and development of a heterologous whole-cell biotransformation system. Appl. Environ.?Microbiol. 81: 6268-6275. 

  42. Choi SS, Lee HN, Park E, Lee SJ, Kim ES. 2020. Recent advances in?microbial production of cis,cis-muconic acid. Biomolecules 10: 1238. 

  43. Shin WS, Lee D, Lee SJ, Chun GT, Choi SS, Kim ES, et al. 2018.?Characterization of a non-phosphotransferase system for cis,?cis-muconic acid production in Corynebacterium glutamicum.?Biochem. Biophys. Res. Commun. 499: 279-284. 

  44. Brott S, Pfaff L, Schuricht J, Schwarz JN, Bottcher D, et al. 2021.?Engineering and evaluation of thermostable IsPETase variants?for PET degradation. Eng. Life. Sci. 22: 192-203. 

  45. Molitor R, Bollinger A, Kubicki S, Loeschcke A, Jaeger KE, Thies S.?2019. Agar plate-based screening methods for the identification?of polyester hydrolysis by Pseudomonas species. Microb. Biotechnol.?13: 271-284. 

  46. Nishida H, Tokiwq Y. 1993. Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments. World J. Microbiol. Biotechnol. 28:?2929-2935.? 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로